Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Material
Type of Publication
Consortium
Language
  • 1
    UID:
    (DE-627)1789114594
    Format: xiii, 478 pages , illustrations , 24 cm
    ISBN: 1119523532 , 9781119523536
    Series Statement: IEEE Press series on microelectronic systems
    Content: "Advancements in transistor technology have driven the modern smart-device revolution--many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture. JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop reference on the study and research on JLFET."--Page 4 of cover
    Note: Minimal Level Cataloging Plus , Includes bibliographical references and index
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    (DE-602)b3kat_BV045679796
    Format: xiii, 478 Seiten , Illustrationen, Diagramme
    ISBN: 9781119523536
    Series Statement: IEEE press series on microelecronic systems 21
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Feldeffekttransistor ; Grenzfläche
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    (DE-627)1679257609
    Format: 1 Online-Ressource (1 online resource)
    ISBN: 1119523516 , 1119523540 , 9781119523512 , 9781119523543
    Series Statement: IEEE Press series on microelectronic systems
    Content: 1.7.3 Gate-Induced Drain Leakage1.7.4 Direct Source to Drain Tunneling; 1.7.5 Boltzmann Tyranny; 1.7.6 Ultrasteep Doping Profile; 1.8 Conclusion; References; 2 Emerging FET Architectures; 2.1 Tunnel FETs; 2.1.1 Structure; 2.1.2 Operation; 2.1.3 Challenges; 2.2 Impact Ionization MOSFET; 2.2.1 Structure; 2.2.2 Operation and Characteristics; 2.2.3 Challenges; 2.3 BIPOLAR I-MOS; 2.3.1 Structure; 2.3.2 Operation and Characteristics; 2.3.3 Challenges; 2.4 Negative capacitance FETs; 2.4.1 Negative Capacitance in Ferroelectric Materials; 2.4.2 Structure; 2.4.3 Operation and Characteristics
    Content: 2.4.4 Challenges2.5 Two-Dimensional FETs; 2.5.1 Structure; 2.5.2 Operation; 2.5.3 Challenges; 2.6 Nanowire FETs; 2.6.1 Structure and Characteristics; 2.6.2 Gate-Induced Drain Leakage; 2.6.3 Challenges; 2.7 Nanotube FETs; 2.7.1 Structure; 2.7.2 Operation and Characteristics; 2.7.3 Gate-Induced Drain Leakage; 2.7.4 Dynamic Performance; 2.7.5 Impact of Spacer Material; 2.7.6 Impact of Core Diameter; 2.7.7 Challenges; 2.8 Conclusion; References; 3 Fundamentals of Junctionless Field-Effect Transistors; 3.1 Device Structure; 3.2 Operation; 3.2.1 Full Depletion; 3.2.2 Partial Depletion
    Content: 3.2.3 Flat Band Condition3.2.4 Accumulation; 3.3 Design Parameters; 3.3.1 Fabrication Flow; 3.4 Parameters that Affect the Performance; 3.4.1 Mobility; 3.4.2 Impact of Strain on Mobility; 3.4.3 Carrier Ballisticity; 3.4.4 Temperature Dependence; 3.4.5 Bias Temperature Instability; 3.4.6 Low-Frequency Noise; 3.4.7 Short-Channel Effects; 3.5 Beyond Silicon JLFETs: Other Materials; 3.5.1 Germanium JLFETs; 3.5.2 Indium Gallium Arsenide JLFETs; 3.5.3 Gallium Nitride JLFETs; 3.6 Challenges; 3.6.1 High Source/Drain Series Resistance; 3.6.2 Random Dopant Fluctuations; 3.6.3 RDF in JLFETs
    Content: 3.6.4 Sensitivity to Process Variations3.6.5 Fabrication Issues; 3.6.6 Band-to-Band Tunneling in OFF-State; 3.7 Conclusion; References; 4 Device Architectures to Mitigate Challenges in Junctionless Field-Effect Transistors; 4.1 Junctionless Accumulation-Mode Field-Effect Transistors; 4.1.1 Structure; 4.1.2 Operation; 4.1.3 Challenges; 4.2 Realizing Efficient Volume Depletion; 4.3 SOI JLFET With A High- Box; 4.3.1 Structure; 4.3.2 Transfer Characteristics; 4.3.3 Operation; 4.3.4 Impact of Gate Length Scaling; 4.3.5 Impact of BOX Thickness and Ground Plane Doping; 4.3.6 Impact of Traps
    Content: A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution-many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture. JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop reference on the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: -Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET -Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation -Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs -Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices
    Content: Intro; Junctionless Field-Effect Transistors; Contents; Preface; 1 Introduction to Field-Effect Transistors; 1.1 Transistor Action; 1.2 Metal-Oxide-Semiconductor Field-Effect Transistors; 1.2.1 "Field-Effect" and Operation Modes; 1.2.2 MOSFET as a Switch; 1.2.3 Transfer Characteristics and Output Characteristics; 1.3 MOSFET Circuits: The Need for Complementary MOS; 1.3.1 CMOS Inverter; 1.3.2 Power Dissipation in CMOS Inverter; 1.4 The Need for CMOS Scaling; 1.5 Moore's Law; 1.6 Koomey's Law; 1.7 Challenges in Scaling the MOSFET; 1.7.1 Short-Channel Effects; 1.7.2 Hot Electron Effect
    Note: Includes bibliographical references and index
    Additional Edition: 1119523532
    Additional Edition: 9781119523536
    Additional Edition: Erscheint auch als Druck-Ausgabe 1119523532
    Additional Edition: 9781119523536
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    (DE-605)HT020086379
    Format: xiii, 478 Seiten , Illustrationen, Diagramme
    ISBN: 9781119523536
    Language: English
    Keywords: Feldeffekttransistor ; Grenzfläche
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    (DE-627)1048579786
    Format: 1 online resource (497 pages)
    ISBN: 9781119523512
    Series Statement: IEEE Press Series on Microelectronic Systems Ser.
    Content: Intro -- Junctionless Field-Effect Transistors -- Contents -- Preface -- 1 Introduction to Field-Effect Transistors -- 1.1 Transistor Action -- 1.2 Metal-Oxide-Semiconductor Field-Effect Transistors -- 1.2.1 "Field-Effect" and Operation Modes -- 1.2.2 MOSFET as a Switch -- 1.2.3 Transfer Characteristics and Output Characteristics -- 1.3 MOSFET Circuits: The Need for Complementary MOS -- 1.3.1 CMOS Inverter -- 1.3.2 Power Dissipation in CMOS Inverter -- 1.4 The Need for CMOS Scaling -- 1.5 Moore's Law -- 1.6 Koomey's Law -- 1.7 Challenges in Scaling the MOSFET -- 1.7.1 Short-Channel Effects -- 1.7.2 Hot Electron Effect -- 1.7.3 Gate-Induced Drain Leakage -- 1.7.4 Direct Source to Drain Tunneling -- 1.7.5 Boltzmann Tyranny -- 1.7.6 Ultrasteep Doping Profile -- 1.8 Conclusion -- References -- 2 Emerging FET Architectures -- 2.1 Tunnel FETs -- 2.1.1 Structure -- 2.1.2 Operation -- 2.1.3 Challenges -- 2.2 Impact Ionization MOSFET -- 2.2.1 Structure -- 2.2.2 Operation and Characteristics -- 2.2.3 Challenges -- 2.3 BIPOLAR I-MOS -- 2.3.1 Structure -- 2.3.2 Operation and Characteristics -- 2.3.3 Challenges -- 2.4 Negative capacitance FETs -- 2.4.1 Negative Capacitance in Ferroelectric Materials -- 2.4.2 Structure -- 2.4.3 Operation and Characteristics -- 2.4.4 Challenges -- 2.5 Two-Dimensional FETs -- 2.5.1 Structure -- 2.5.2 Operation -- 2.5.3 Challenges -- 2.6 Nanowire FETs -- 2.6.1 Structure and Characteristics -- 2.6.2 Gate-Induced Drain Leakage -- 2.6.3 Challenges -- 2.7 Nanotube FETs -- 2.7.1 Structure -- 2.7.2 Operation and Characteristics -- 2.7.3 Gate-Induced Drain Leakage -- 2.7.4 Dynamic Performance -- 2.7.5 Impact of Spacer Material -- 2.7.6 Impact of Core Diameter -- 2.7.7 Challenges -- 2.8 Conclusion -- References -- 3 Fundamentals of Junctionless Field-Effect Transistors -- 3.1 Device Structure -- 3.2 Operation -- 3.2.1 Full Depletion.
    Content: 3.2.2 Partial Depletion -- 3.2.3 Flat Band Condition -- 3.2.4 Accumulation -- 3.3 Design Parameters -- 3.3.1 Fabrication Flow -- 3.4 Parameters that Affect the Performance -- 3.4.1 Mobility -- 3.4.2 Impact of Strain on Mobility -- 3.4.3 Carrier Ballisticity -- 3.4.4 Temperature Dependence -- 3.4.5 Bias Temperature Instability -- 3.4.6 Low-Frequency Noise -- 3.4.7 Short-Channel Effects -- 3.5 Beyond Silicon JLFETs: Other Materials -- 3.5.1 Germanium JLFETs -- 3.5.2 Indium Gallium Arsenide JLFETs -- 3.5.3 Gallium Nitride JLFETs -- 3.6 Challenges -- 3.6.1 High Source/Drain Series Resistance -- 3.6.2 Random Dopant Fluctuations -- 3.6.3 RDF in JLFETs -- 3.6.4 Sensitivity to Process Variations -- 3.6.5 Fabrication Issues -- 3.6.6 Band-to-Band Tunneling in OFF-State -- 3.7 Conclusion -- References -- 4 Device Architectures to Mitigate Challenges in Junctionless Field-Effect Transistors -- 4.1 Junctionless Accumulation-Mode Field-Effect Transistors -- 4.1.1 Structure -- 4.1.2 Operation -- 4.1.3 Challenges -- 4.2 Realizing Efficient Volume Depletion -- 4.3 SOI JLFET With A High- Box -- 4.3.1 Structure -- 4.3.2 Transfer Characteristics -- 4.3.3 Operation -- 4.3.4 Impact of Gate Length Scaling -- 4.3.5 Impact of BOX Thickness and Ground Plane Doping -- 4.3.6 Impact of Traps -- 4.3.7 High-Frequency Performance -- 4.3.8 Challenges -- 4.4 Bulk Planar JLFET -- 4.4.1 Structure -- 4.4.2 Transfer Characteristics -- 4.4.3 Operation -- 4.4.4 Impact of Gate Length Scaling -- 4.4.5 Impact of Substrate Doping and Substrate Bias -- 4.4.6 Challenges -- 4.5 JLFET With A Nonuniform Doping -- 4.5.1 Structure -- 4.5.2 Transfer Characteristics -- 4.5.3 Operation -- 4.5.4 Impact of Gate Length Scaling -- 4.5.5 Impact of the Steepness of Doping Profile -- 4.5.6 Challenges -- 4.6 JLFET With a Step Doping Profile -- 4.6.1 Structure -- 4.6.2 Transfer Characteristics
    Content: 4.6.3 Operating Principle -- 4.6.4 Challenges -- 4.6.5 Performance Optimization -- 4.7 Multigate JLFET -- 4.7.1 Structure -- 4.7.2 Transfer Characteristics -- 4.7.3 Operation -- 4.7.4 Challenges -- 4.7.5 Junctionless bulk FinFET -- 4.8 JLFET With a High- Spacer -- 4.8.1 Structure -- 4.8.2 Transfer Characteristics -- 4.8.3 Operating Principle -- 4.8.4 Challenges -- 4.9 JLFET With a Dual Material Gate -- 4.9.1 Structure -- 4.9.2 Characteristics -- 4.9.3 Operation -- 4.9.4 Impact of Length of Control Gate and Work Function Difference between Control and Screen Gates -- 4.9.5 Challenges -- 4.10 Conclusion -- References -- 5 Gate-Induced Drain Leakage in Junctionless Field-Effect Transistors -- 5.1 Hole Accumulation -- 5.2 Parasitic BJT Action -- 5.3 Impact of BTBT-Induced Parasitic BJT Action on Scaling -- 5.4 Impact of Silicon Film Thickness on GIDL -- 5.4.1 Impact of Silicon Film Thickness on Tunneling Width -- 5.4.2 Impact of Quantum Confinement Effects -- 5.4.3 Shielding Effect -- 5.4.4 Impact of Silicon Film Thickness on the ON-State Current -- 5.5 Impact of Doping on GIDL -- 5.6 Impact of Spacer Design on GIDL -- 5.7 Nature of GIDL in Different NWFET Configurations -- 5.7.1 Transfer Characteristics -- 5.7.2 Parasitic BJT Action -- 5.7.3 Origin of Difference in Nature of GIDL -- 5.7.4 Gain of Parasitic BJT in NWFETs -- 5.7.5 Impact of Gate Length Scaling on Nature of GIDL -- 5.8 Device Architectures to Mitigate GIDL -- 5.8.1 JLFETs with a Hybrid Channel -- 5.8.2 JLFETs with a Heterodielectric Buried Oxide -- 5.8.3 Bulk Planar JLFET -- 5.8.4 JLFETs with Heterogate Dielectric -- 5.8.5 Dual Material Gate in JLFETs and JAMFETs -- 5.8.6 Core-Shell JLFETs with P+ Core -- 5.8.7 CSJLFETs with Intrinsic Core -- 5.8.8 Extended Back Gate Double-Gate JLFET -- 5.8.9 Nanotube JLFETs -- 5.8.10 JLFETs with Tunnel Dielectric -- 5.9 CONCLUSION -- REFERENCES
    Content: 6 Impact Ionization in Junctionless Field-Effect Transistors -- 6.1 Impact Ionization -- 6.2 Floating Body Effects in Silicon-on-Insulator MOSFETs -- 6.2.1 Hole Accumulation -- 6.2.2 Kink Effect -- 6.2.3 Parasitic BJT Action -- 6.2.4 Suppression of Floating Body Effects -- 6.3 Nature of Impact Ionization in JLFETs -- 6.3.1 Steep Subthreshold Swing at a Low Voltage in JLFETs -- 6.3.2 Nature of Floating Body Effect in JLFETs -- 6.3.3 Impact of Gate Oxide Thickness -- 6.4 Zero Gate Oxide Thickness Coefficient -- 6.4.1 Significance of the Zero Gate Oxide Coefficient -- 6.4.2 Implication of the Zero Gate Oxide Coefficient on Electric Field -- 6.5 Single Transistor Latch-Up in JLFETs -- 6.6 Impact of Body Bias on Impact Ionization in JLFETs -- 6.7 Subband Gap Impact Ionization in DGJLFETS with Asymmetric Operation -- 6.7.1 Operation -- 6.8 Impact of Gate Misalignment on Impact Ionization in DGJLFETs -- 6.8.1 Operation -- 6.9 Spacer Design Guideline from Impact Ionization Perspective -- 6.9.1 Impact of Temperature -- 6.10 Hysteresis and Snapback in JLFETs -- 6.11 Impact of Heavy-Ion Irradiation on JLFETs -- 6.12 Conclusions -- References -- 7 Junctionless Devices Without Any Chemical Doping -- 7.1 Charge Plasma Doping -- 7.2 Charge Plasma Based p-n Diode -- 7.2.1 Structure -- 7.2.2 Operation and Characteristics -- 7.3 Junctionless IMOS FET -- 7.3.1 Structure -- 7.3.2 Characteristics -- 7.3.3 Operation -- 7.4 Junctionless Tunnel FETs -- 7.4.1 Structure -- 7.4.2 Operation and Characteristics -- 7.5 JLTFET on a Highly Doped Silicon Film -- 7.5.1 Structure and Characteristics -- 7.6 Bipolar Enhanced JLTFET -- 7.6.1 Structure -- 7.6.2 Transfer Characteristics -- 7.6.3 Operation -- 7.7 Junctionless FETS Without Any Chemical Doping -- 7.7.1 Structure -- 7.7.2 Transfer Characteristics and Operation -- 7.7.3 Impact of Gate Length Scaling
    Content: 7.7.4 Sensitivity to Process Variation -- 7.8 Challenges for CPJLFETs -- 7.8.1 Realizing Ohmic Source/Drain Contact on Undoped Silicon Film -- 7.8.2 Tunneling in CPJLFETs -- 7.9 Electrostatic Doping Based FETs -- 7.9.1 Revisiting Field-Effect in MOS Architectures -- 7.9.2 Structure -- 7.9.3 Operation -- 7.9.4 Challenges -- 7.9.5 Reconfigurability Utilizing Single Polarity Gate -- 7.9.6 Electrostatically Doped TFET -- 7.10 Conclusions -- References -- 8 Modeling Junctionless Field-Effect Transistors -- 8.1 Introduction to FET Modeling -- 8.2 Surface Potential Modeling of JLFETS -- 8.2.1 Operating Regionwise Approximation Technique -- 8.2.2 Parabolic Approximation Technique -- 8.2.3 Initial Guess technique -- 8.2.4 Finite Difference Approach -- 8.3 Charge-Based Modeling Approach -- 8.4 Drain Current Modeling Approach -- 8.4.1 Bulk Current Model -- 8.4.2 The Pao-Sah Integral -- 8.5 Modeling Short-Channel JLFETS -- 8.5.1 Quasi-2D Scaling Equation -- 8.5.2 Scaling Implication for MOSFETs Using Quasi-2D Approach -- 8.6 Modeling Quantum Confinement -- 8.7 Conclusion -- References -- 9 Simulation of JLFETS Using Sentaurus TCAD -- 9.1 Introduction to TCAD -- 9.2 Tool Flow -- 9.2.1 Structure Specification -- 9.2.2 Model Parameter Specification -- 9.2.3 Device Simulation -- 9.3 Sample Input Deck for Long-Channel JLFETS -- 9.3.1 Structure Specification -- 9.3.2 Device Simulation -- 9.3.3 Model Parameter Specification -- 9.3.4 Visualizing the Outputs -- 9.4 Model Calibration -- 9.5 Model Calibration for Short-Channel JLFETS -- 9.5.1 Structure Specification -- 9.5.2 Device Simulations -- 9.5.3 Model Parameters for Calibration -- 9.6 Model Calibration for NWFETS -- 9.6.1 Assumptions -- 9.6.2 Structure Specification -- 9.6.3 Device Simulations -- 9.6.4 Model Parameters -- 9.6.5 Simulation of NWJLFETs -- 9.7 Conclusion -- References -- 10 Conclusion and Perspectives
    Content: 10.1 JLFETS as a Label-Free Biosensor
    Note: Description based on publisher supplied metadata and other sources
    Additional Edition: 9781119523536
    Additional Edition: Erscheint auch als Druck-Ausgabe 9781119523536
    Language: English
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages