Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 36, No. 20 ( 2018-07-10), p. 2024-2034
    Abstract: Interim positron emission tomography (PET) using the tracer, [ 18 F]fluorodeoxyglucose, may predict outcomes in patients with aggressive non-Hodgkin lymphomas. We assessed whether PET can guide therapy in patients who are treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Patients and Methods Newly diagnosed patients received two cycles of CHOP—plus rituximab (R-CHOP) in CD20-positive lymphomas—followed by a PET scan that was evaluated using the ΔSUV max method. PET-positive patients were randomly assigned to receive six additional cycles of R-CHOP or six blocks of an intensive Burkitt’s lymphoma protocol. PET-negative patients with CD20-positive lymphomas were randomly assigned or allocated to receive four additional cycles of R-CHOP or the same treatment with two additional doses rituximab. The primary end point was event-free survival time as assessed by log-rank test. Results Interim PET was positive in 108 (12.5%) and negative in 754 (87.5%) of 862 patients treated, with statistically significant differences in event-free survival and overall survival. Among PET-positive patients, 52 were randomly assigned to R-CHOP and 56 to the Burkitt protocol, with 2-year event-free survival rates of 42.0% (95% CI, 28.2% to 55.2%) and 31.6% (95% CI, 19.3% to 44.6%), respectively (hazard ratio, 1.501 [95% CI, 0.896 to 2.514]; P = .1229). The Burkitt protocol produced significantly more toxicity. Of 754 PET-negative patients, 255 underwent random assignment (129 to R-CHOP and 126 to R-CHOP with additional rituximab). Event-free survival rates were 76.4% (95% CI, 68.0% to 82.8%) and 73.5% (95% CI, 64.8% to 80.4%), respectively (hazard ratio, 1.048 [95% CI, 0.684 to 1.606] ; P = .8305). Outcome prediction by PET was independent of the International Prognostic Index. Results in diffuse large B-cell lymphoma were similar to those in the total group. Conclusion Interim PET predicted survival in patients with aggressive lymphomas treated with R-CHOP. PET-based treatment intensification did not improve outcome.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2018
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 98, No. 4 ( 2019-4), p. 897-907
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1458429-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Hematological Oncology, Wiley, Vol. 38, No. 3 ( 2020-08), p. 244-256
    Abstract: The prospective randomized Positron Emission Tomography (PET)‐Guided Therapy of Aggressive Non‐Hodgkin Lymphomas (PETAL) trial was designed to test the ability of interim PET (iPET) to direct therapy. As reported previously, outcome remained unaffected by iPET‐based treatment changes. In this subgroup analysis, we studied the prognostic value of baseline total metabolic tumor volume (TMTV) and iPET response in 76 patients with T‐cell lymphoma. TMTV was measured using the 41% maximum standardized uptake value (SUV 41max ) and SUV 4 thresholding methods. Interim PET was performed after two treatment cycles and evaluated using the ΔSUV max approach and the Deauville scale. Because of significant differences in outcome, patients with anaplastic lymphoma kinase (ALK)‐positive lymphoma were analyzed separately from patients with ALK‐negative lymphoma. In the latter, TMTV was statistically significantly correlated with progression‐free survival, with thresholds best dichotomizing the population, of 232 cm 3 using SUV 41max and 460 cm 3 using SUV 4 . For iPET response, the respective thresholds were 46.9% SUV max reduction and Deauville score 1‐4 vs 5. The proportion of poor prognosis patients was 46% and 29% for TMTV by SUV 41max and SUV 4 , and 29% and 25% for iPET response by ΔSUV max and Deauville, respectively. At diagnosis, the hazard ratio (95% confidence interval) for poor prognosis vs good prognosis patients according to TMTV was 2.291 (1.135‐4.624) for SUV 41max and 3.206 (1.524‐6.743) for SUV 4 . At iPET, it was 3.910 (1.891‐8.087) for ΔSUV max and 4.371 (2.079‐9.187) for Deauville. On multivariable analysis, only TMTV and iPET response independently predicted survival. Patients with high baseline TMTV and poor iPET response (22% of the population) invariably progressed or died within the first year (hazard ratio, 9.031 [3.651‐22.336]). Due to small numbers and events, PET did not predict survival in ALK‐positive lymphoma. Baseline TMTV and iPET response are promising tools to select patients with ALK‐negative T‐cell lymphoma for early allogeneic transplantation or innovative therapies.
    Type of Medium: Online Resource
    ISSN: 0278-0232 , 1099-1069
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2001443-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1857-1857
    Abstract: Introduction: The PETAL trial is a multicenter randomized controlled study for patients with aggressive lymphomas of diverse histologies (EudraCT 2006-001641-33, NCT00554164). In the study population as a whole interim PET (iPET) reliably predicted time to treatment failure (TTTF) and overall survival (OS). Interim PET-based treatment changes, however, had no impact on outcome (ASH 2014, abstract 391). Here we report the exploratory analysis for aggressive B cell lymphomas. Methods: Pts. aged 18 to 80 yrs. with newly diagnosed aggressive lymphomas and a positive baseline PET received 2 cycles of rituximab (R), cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) followed by iPET. The conditions of iPET were strictly defined: 3-week interval between the 2nd R-CHOP cycle and iPET to avoid inflammatory reactions (Eur J Nucl Med Mol Imaging 30:682, 2003), no G-CSF after the 2nd cycle to avoid altered glucose biodistribution (J Nucl Med 47:950, 2006), standardized uptake value (SUV)-based PET interpretation to improve reproducibility (favorable iPET response: reduction of maximum SUV by 〉 66 % compared to baseline; J Nucl Med 48:1626, 2007). Pts. with CD20+ lymphomas and a favorable iPET were randomized to receive 4 more cycles of R-CHOP or the same treatment plus 2 extra doses of R (part A of the trial). Pts. with an unfavorable iPET were randomized to continue R-CHOP for 6 additional cycles or receive 6 blocks of a more complex methotrexate-, cytarabine- and etoposide-based regimen originally designed for Burkitt lymphoma (Blood 124: 3870, 2014; part B). R was omitted in pts. with CD20- lymphomas. Sample size of the entire study population was based on the empirically derived assumption that treatment failure after 2 yrs. (TF: progression, relapse, treatment discontinuation due to toxicity, start of alternative therapy, death of any cause) could be improved from 80 % to 90 % in part A and from 30 % to 45 % in part B (alpha=0.05, power=0.8). Secondary endpoints included OS and toxicity. Results: Fifty-seven oncological centers and 23 nuclear medicine institutions participated in the trial. Between 2007 and 2012 1072 pts. were registered, and 862 (80.4 %) had a positive baseline PET, received 2 cycles R-CHOP, underwent iPET and were allocated to one of the post-iPET treatment arms detailed above. Reference pathology was available in 98 %, and median follow-up is 52 months. All in all, there were 779 patients with CD20+ aggressive B-cell lymphomas (90.4 % of all treated pts.) of whom 606 had diffuse large B-cell lymphoma (DLBCL), 42 primary mediastinal B-cell lymphoma (PMBCL) and 42 follicular lymphoma grade 3 (FL3). Interim PET was favorable in 691 pts. (88.7 %) and unfavorable in 88 pts. with CD20+ lymphomas (11.3 %). It was highly predictive of TTTF for CD20+ lymphomas in general and for each of the DLBCL, PMBCL and FL3 subgroups (Table). In CD20+ lymphomas and DLBCL, the iPET response predicted TF independently of the International Prognostic Index, and it was also predictive of OS. The groups of PMBCL and FL3 were too small for multivariate analyses. In part A, adding 2 extra doses of R failed to improve TTTF and OS in all histological entities. Separate analyses for subgroups defined by sex, age ( 〈 vs. 〉 60 yrs.) or a combination of the two showed no statistically significant benefit of extra doses of R in any of the subgroups. In pts. with an unfavorable iPET response, a switch from R-CHOP to the Burkitt regimen failed to improve TTTF or OS in CD20+ lymphomas in general (Figure) and in the DLBCL, PMBCL and FL3 subgroups. In part B, the Burkitt protocol was associated with more grade 3/4 leukopenia (82 % vs. 57 %, p=0.02), thrombocytopenia (59 % vs. 18 %, p=0.0001), infection (41 % vs. 16 %, p=0.017) and mucositis (39 % vs. 7 %, p=0.0007) than R-CHOP, but treatment-related mortality was similar in both arms (1 death each). Conclusion: In this large multicenter trial iPET proved highly predictive of outcome in pts. with CD20+ aggressive B-cell lymphomas, DLBCL, PMBCL or FL3 treated with R-CHOP. In pts. with a favorable iPET response, addition of 2 extra doses of R to 6 cycles R-CHOP failed to improve outcome in CD20+ lymphomas in general and in subgroups defined by histology, sex or age. In pts. with an unfavorable iPET response, switching to a more aggressive protocol also failed to improve outcome in any of the entities. Novel strategies are required for aggressive B-cell lymphomas failing to respond to the first 2 cycles of R-CHOP. Table Table. Figure Figure. Disclosures Duehrsen: Roche: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria, Research Funding. Giagounidis:Celgene Corporation: Consultancy. Grube:BMS, Sanofi: Consultancy. Klapper:Roche, Novartis, Amgen, Takeda: Research Funding. Hüttmann:Bristol-Myers Squibb, Takeda, Celgene, Roche: Honoraria; Gilead, Amgen: Other: Travel cost.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages