Skip to main content

Advertisement

Log in

Molecular Insights into the Relationship Between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.

On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This is a review study, and it is not an original. Data availability is corresponding author responsibility.

References

  1. Endemann, D. H., & Schiffrin, E. L. (2004). Endothelial dysfunction. Journal of the American Society of Nephrology, 15(8), 1983–1992.

    Article  CAS  PubMed  Google Scholar 

  2. Dong, L., Gan, L., Wang, H., & Cai, W. (2019). Age-related impairment of structure and function of iliac artery endothelium in rats is improved by elevated fluid shear stress. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 5127.

    Article  CAS  PubMed  Google Scholar 

  3. Ashraf, H., Soltani, D., Sobh-Rakhshankhah, A., Jafari, S., Boroumand, M. A., Goudarzi, V., et al. (2019). Visfatin as marker of isolated coronary artery ectasia and its severity. Cytokine, 113, 216–220.

    Article  CAS  PubMed  Google Scholar 

  4. Golshiri, P., Mostofi, A., & Rouzbahani, S. (2023). The effect of problem-solving and assertiveness training on self-esteem and mental health of female adolescents: A randomized clinical trial. BMC Psychology, 11(1), 106.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, C., et al. (2021). Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines, 9(7), 781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh, G. B., Zhang, Y., Boini, K. M., & Koka, S. (2019). High mobility group box 1 mediates TMAO-induced endothelial dysfunction. International Journal of Molecular Sciences, 20(14), 3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soltani, F., Janatmakan, F., Jorairahmadi, S., Javaherforooshzadeh, F., Alizadeh, P., & Alipour, I. (2021). Evaluation of the effect of atorvastatin administration on the outcomes of patients with traumatic brain injury: a double-blinded randomized clinical trial. Anesthesiology and Pain Medicine, 11(4).

  8. Vogel, S., Bodenstein, R., Chen, Q., Feil, S., Feil, R., Rheinlaender, J., et al. (2015). Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of Clinical Investigation, 125(12), 4638–4654.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haas, Z. A., Qian, C., Dabski, M. A., Jafarisis, S., Cousins, J., Fernandez, S. F., et al. (2023). The use of contrast may improve aortic valve assessment during transesophageal echocardiography. Journal of Cardiothoracic and Vascular Anesthesia, 37(6), 904–910.

    Article  PubMed  Google Scholar 

  10. Hamilos, M., Petousis, S., & Parthenakis, F. (2018). Interaction between platelets and endothelium: From pathophysiology to new therapeutic options. Cardiovasc Diagn Ther, 8(5), 568–580.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y. Y., Shi, L. X., Li, J. H., Yao, L. Y., & Xiang, D. X. (2019). Piperazine ferulate ameliorates the development of diabetic nephropathy by regulating endothelial nitric oxide synthase. Molecular Medicine Reports, 19(3), 2245–2253.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Amiri, B. S., Radkhah, H., Taslimi, R., Dastjerdi, Z. S., Khadembashiri, M. M., Mesgarha, M. G., et al. (2023). Thrombotic thrombocytopenic purpura following ChAdOx1 nCov-19 vaccination: A case report. IDCases, 32, e01795.

    Article  Google Scholar 

  13. van der Poll, T., & Parker, R. I. (2020). Platelet activation and endothelial cell dysfunction. Critical Care Clinics, 36(2), 233–253.

    Article  PubMed  Google Scholar 

  14. Kavousi, S., Ahmadifar, M., Fard, T. M., Lavasani, N. S., Jalili, A., Sadrabadi, A. E., et al. (2020). Specific signaling pathways and drugs play key role in regulation of angiogenesis.

  15. Shi, G., & Morrell, C. N. (2011). Platelets as initiators and mediators of inflammation at the vessel wall. Thrombosis Research, 127(5), 387–390.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, X., Lu, J., Wu, B., & Guo, Z. (2022). HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188–5p to regulate VEGFA. Journal of Dermatological Science, 106(2), 111–118.

    Article  CAS  PubMed  Google Scholar 

  17. Soltanpor Dehkordi, A., Sayahinouri, M., Hosseininia, H. S., Kazempour, A., Mehtar Araghinia, R., Saadati Partan, A., et al. (2023). Wnt7b as a novel candidate in silico analysis of angiogenesis-related expressed genes in non-small cell lung cancer patients. Iranian Journal of Blood and Cancer, 15(4), 236–252.

    Article  Google Scholar 

  18. Pakala, R. (2004). Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovascular Radiation Medicine, 5(1), 20–26.

    Article  PubMed  Google Scholar 

  19. Nording, H. M., Seizer, P., & Langer, H. F. (2015). Platelets in inflammation and atherogenesis. Frontiers in Immunology, 6, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bye, A. P., Unsworth, A. J., & Gibbins, J. M. (2016). Platelet signaling: A complex interplay between inhibitory and activatory networks. Journal of Thrombosis and Haemostasis, 14(5), 918–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fraineau, S., Palii, C. G., Allan, D. S., & Brand, M. (2015). Epigenetic regulation of endothelial-cell-mediated vascular repair. The FEBS Journal, 282(9), 1605–1629.

    Article  CAS  PubMed  Google Scholar 

  22. Danielak, D., Pawlak, K., Główka, F., & Karaźniewicz-Łada, M. (2022). Influence of genetic and epigenetic factors of P2Y12 receptor on the safety and efficacy of antiplatelet drugs. Cardiovascular Drugs and Therapy, 1–16.

  23. Danese, E., Montagnana, M., Gelati, M., & Lippi, G. (2021). The role of epigenetics in the regulation of hemostatic balance. Seminars in Thrombosis and Hemostasis, 47(1), 53–62.

    Article  PubMed  Google Scholar 

  24. Karatzis, E. N. (2005). The role of inflammatory agents in endothelial function and their contribution to atherosclerosis. Hellenic Journal of Cardiology, 46(3), 232–239.

    PubMed  Google Scholar 

  25. Schafer, A., & Bauersachs, J. (2008). Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Current Vascular Pharmacology, 6(1), 52–60.

    Article  PubMed  Google Scholar 

  26. Venereau, E., De Leo, F., Mezzapelle, R., Careccia, G., Musco, G., & Bianchi, M. E. (2016). HMGB1 as biomarker and drug target. Pharmacological Research, 111, 534–544.

    Article  CAS  PubMed  Google Scholar 

  27. Chu, Y., Jing, Y., Zhao, X., Wang, M., Zhang, M., Ma, R., et al. (2021). Modulation of the HMGB1/TLR4/NF-κB signaling pathway in the CNS by matrine in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 352, 577480.

    Article  CAS  PubMed  Google Scholar 

  28. Rahmani, F., Safavi, P., Fathollahpour, A., Sabz, F. T. K., Tajzadeh, P., Arefnezhad, M., et al. (2022). The interplay between non-coding RNAs and Wnt/ß-catenin signaling pathway in urinary tract cancers: From tumorigenesis to metastasis. EXCLI Journal, 21, 1273.

    PubMed  PubMed Central  Google Scholar 

  29. Chen, R., Kang, R., & Tang, D. (2022). The mechanism of HMGB1 secretion and release. Experimental & Molecular Medicine, 54(2), 91–102.

    Article  CAS  Google Scholar 

  30. Zhou, L., Liu, Y., Sun, H., Li, H., Zhang, Z., & Hao, P. (2022). Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sensors and Actuators B: Chemical, 369, 132315.

    Article  CAS  Google Scholar 

  31. Zhang, C. (2008). The role of inflammatory cytokines in endothelial dysfunction. Basic Research in Cardiology, 103, 398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y., Zhai, W., Yang, L., Cheng, S., Cui, W., & Li, J. (2023). Establishments and evaluations of post-operative adhesion animal models. Advanced Therapeutics, 2200297.

  33. Dolmatova, E. V., Wang, K., Mandavilli, R., & Griendling, K. K. (2021). The effects of sepsis on endothelium and clinical implications. Cardiovascular Research, 117(1), 60–73.

    Article  CAS  PubMed  Google Scholar 

  34. Hopkins, P. N. (2013). Molecular biology of atherosclerosis. Physiological Reviews.

  35. Deng, M., Scott, M. J., Fan, J., & Billiar, T. R. (2019). Location is the key to function: HMGB1 in sepsis and trauma-induced inflammation. Journal of Leukocyte Biology, 106(1), 161–169.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, S., & Zhang, Y. (2020). HMGB1 in inflammation and cancer. BioMed Central, 1–4.

  37. Han, Q.-A., Su, D., Shi, C., Liu, P., Wang, Y., Zhu, B., et al. (2020). Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food & Function, 11(4), 3432–40.

    Article  CAS  Google Scholar 

  38. Lu, S., Yang, B., Xiao, Y., Liu, S., Liu, M., Yin, L., et al. (2023). Iterative reconstruction of low-dose CT based on differential sparse. Biomedical Signal Processing and Control, 79, 104204.

    Article  Google Scholar 

  39. Huang, A., & Zhou, W. (2023). Mn-based cGAS-STING activation for tumor therapy. Chinese Journal of Cancer Research, 35(1), 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Estevez, B., & Du, X. (2017). New concepts and mechanisms of platelet activation signaling. Physiology, 32(2), 162–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rahmani, F., Zandigohar, M., Safavi, P., Behzadi, M., Ghorbani, Z., Payazdan, M., et al. (2023). The interplay between noncoding RNAs and p21 signaling in gastrointestinal cancer: from tumorigenesis to metastasis. Current Pharmaceutical Design, 29(10), 766–776.

    Article  CAS  PubMed  Google Scholar 

  42. Liang, W.-J., Yang, H.-W., Liu, H.-N., Qian, W., & Chen, X.-L. (2020). HMGB1 upregulates NF-kB by inhibiting IKB-α and associates with diabetic retinopathy. Life Sciences, 241, 117146.

    Article  CAS  PubMed  Google Scholar 

  43. Ciprandi, G., Bellussi, L. M., Passali, G. C., Damiani, V., & Passali, D. (2020). HMGB1 in nasal inflammatory diseases: A reappraisal 30 years after its discovery. Expert Review of Clinical Immunology, 16(5), 457–463.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, H., Wang, H., Chavan, S. S., & Andersson, U. (2015). High mobility group box protein 1 (HMGB1): The prototypical endogenous danger molecule. Molecular Medicine, 21(1), S6–S12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopes Pires, M. E., Clarke, S. R., Marcondes, S., & Gibbins, J. M. (2017). Lipopolysaccharide potentiates platelet responses via toll-like receptor 4-stimulated Akt-Erk-PLA2 signalling. PLoS One, 12(11), e0186981.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang, C., Yang, W., He, Z., He, H., Yang, X., Lu, Y., et al. (2020). Kaempferol improves lung ischemia-reperfusion injury via antiinflammation and antioxidative stress regulated by SIRT1/HMGB1/NF-κB axis. Frontiers in Pharmacology, 10, 1635.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu, S., Liu, S., Hou, P., Yang, B., Liu, M., Yin, L., et al. (2023). Soft Tissue feature tracking based on DeepMatching network. CMES-Computer Modeling in Engineering & Sciences, 136(1).

  48. Naeiji, Z., Gargar, S. S., Pooransari, P., Rahmati, N., Mirzamoradi, M., Eshraghi, N., et al. (2023). Association between fetal liver diameter and glycemic control in pregnant women with gestational diabetes: A pilot study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 17(9), 102853.

    Article  CAS  Google Scholar 

  49. Loyer, X., Potteaux, S., Vion, A.-C., Guérin, C. L., Boulkroun, S., Rautou, P.-E., et al. (2014). Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation Research, 114(3), 434–443.

    Article  CAS  PubMed  Google Scholar 

  50. Tian, Z., Zhang, Y., Zheng, Z., Zhang, M., Zhang, T., Jin, J., et al. (2022). Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host & Microbe, 30(10), 1450–63. e8.

  51. Qin, B., Yang, H., & Xiao, B. (2012). Role of microRNAs in endothelial inflammation and senescence. Molecular Biology Reports, 39, 4509–4518.

    Article  CAS  PubMed  Google Scholar 

  52. Fernández-Hernando, C., & Suárez, Y. (2018). MicroRNAs in endothelial cell homeostasis and vascular disease. Current Opinion in Hematology, 25(3), 227.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schulz, E., Gori, T., & Münzel, T. (2011). Oxidative stress and endothelial dysfunction in hypertension. Hypertension Research, 34(6), 665–673.

    Article  CAS  PubMed  Google Scholar 

  54. Meng, S.-J., & Yu, L.-J. (2010). Oxidative stress, molecular inflammation and sarcopenia. International Journal of Molecular Sciences, 11(4), 1509–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, J., Shen, Q., Ma, Y., Liu, L., Jia, W., Chen, L., et al. (2022). Calcium homeostasis in Parkinson’s disease: From pathology to treatment. Neuroscience Bulletin, 38(10), 1267–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rezatabar, S., Karimian, A., Rameshknia, V., Parsian, H., Majidinia, M., Kopi, T. A., et al. (2019). RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. Journal of Cellular Physiology, 234(9), 14951–14965.

    Article  CAS  PubMed  Google Scholar 

  57. Lu, S., Yang, J., Yang, B., Yin, Z., Liu, M., Yin, L., et al. (2023). Analysis and Design of Surgical Instrument Localization Algorithm. CMES-Computer Modeling in Engineering & Sciences, 137(1).

  58. Masselli, E., Pozzi, G., Vaccarezza, M., Mirandola, P., Galli, D., Vitale, M., et al. (2020). ROS in platelet biology: Functional aspects and methodological insights. International Journal of Molecular Sciences, 21(14), 4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guidetti, G. F., Canobbio, I., & Torti, M. (2015). PI3K/Akt in platelet integrin signaling and implications in thrombosis. Advances in Biological Regulation, 59, 36–52.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., et al. (2016). ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity, 2016.

  61. Ngo, A. T., Parra-Izquierdo, I., Aslan, J. E., & McCarty, O. J. (2021). Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease. Small GTPases, 12(5–6), 440–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carrim, N., Arthur, J. F., Hamilton, J. R., Gardiner, E. E., Andrews, R. K., Moran, N., et al. (2015). Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα. Redox Biology, 6, 640–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jurak Begonja A. (2007). NO/cGMP and ROS pathways in regulation of platelet function and megakaryocyte maturation. Universität Würzburg.

  64. Cosentino-Gomes, D., Rocco-Machado, N., & Meyer-Fernandes, J. R. (2012). Cell signaling through protein kinase C oxidation and activation. International Journal of Molecular Sciences, 13(9), 10697–10721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minuz, P., Meneguzzi, A., Fumagalli, L., Degan, M., Calabria, S., Ferraro, R., et al. (2018). Calcium-dependent Src phosphorylation and reactive oxygen species generation are implicated in the activation of human platelet induced by thromboxane A2 analogs. Frontiers in Pharmacology, 9, 1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, S., Ilyas, I., Little, P. J., Li, H., Kamato, D., Zheng, X., et al. (2021). Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacological Reviews, 73(3), 924–967.

    Article  CAS  PubMed  Google Scholar 

  67. Bao, M. H., Li, J. M., Zhou, Q. L., Li, G. Y., Zeng, J., Zhao, J., et al. (2016). Effects of miR-590 on oxLDL-induced endothelial cell apoptosis: Roles of p53 and NF-κB. Molecular Medicine Reports, 13(1), 867–873.

    Article  CAS  PubMed  Google Scholar 

  68. Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86.

    Article  PubMed  Google Scholar 

  69. Song, Y.-X., Li, X., Nie, S.-D., Hu, Z.-X., Zhou, D., Sun, D.-Y., et al. (2023). Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate. Cancer Gene Therapy, 1–11.

  70. Zhang, D. X., & Gutterman, D. D. (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology, 292(5), H2023–H2031.

    Article  CAS  PubMed  Google Scholar 

  71. Yu, Y., Tang, D., & Kang, R. (2015). Oxidative stress-mediated HMGB1 biology. Frontiers in Physiology, 6, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., & Simsek, S. (2010). Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of Inflammation, 2010.

  73. Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 20(3), 175–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L., & Zhu, R. (2021). Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 12(1), 2614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Riegger, G. A., & Schunkert, H. (2000). Apoptosis in cardiac biology. Springer.

  76. Hao, Q., Chen, J., Lu, H., & Zhou, X. (2022). The ARTS of p53-dependent mitochondrial apoptosis. Journal of Molecular Cell Biology, 14(10), mjac74.

    Google Scholar 

  77. Abbas, R., & Larisch, S. (2020). Targeting XIAP for promoting cancer cell death—The story of ARTS and SMAC. Cells, 9(3), 663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ding, H.-S., Yang, J., Chen, P., Yang, J., Bo, S.-Q., Ding, J.-W., et al. (2013). The HMGB1–TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene, 527(1), 389–393.

    Article  CAS  PubMed  Google Scholar 

  79. Brenner, D., Blaser, H., & Mak, T. W. (2015). Regulation of tumour necrosis factor signalling: Live or let die. Nature Reviews Immunology, 15(6), 362–374.

    Article  CAS  PubMed  Google Scholar 

  80. Puccini, J., Dorstyn, L., & Kumar, S. (2013). Caspase-2 as a tumour suppressor. Cell Death & Differentiation, 20(9), 1133–1139.

    Article  CAS  Google Scholar 

  81. Dauphinee, S., & Karsan, A. (2010). Endothelial dysfunction and inflammation. Springer.

  82. Strasser, A., O’Connor, L., & Dixit, V. M. (2000). Apoptosis signaling. Annual Review of Biochemistry, 69(1), 217–245.

    Article  CAS  PubMed  Google Scholar 

  83. Fan, Z., He, Y., Sun, W., Li, Z., Ye, C., & Wang, C. (2023). Clinical characteristics, diagnosis and management of Sweet syndrome induced by azathioprine. Clinical and Experimental Medicine, 1–7.

  84. Thomas, C. N., Berry, M., Logan, A., Blanch, R. J., & Ahmed, Z. (2017). Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discovery, 3(1), 1–13.

    Article  Google Scholar 

  85. Hongmei, Z. (2012). Extrinsic and intrinsic apoptosis signal pathway review. Apoptosis and medicine. InTechOpen2.

  86. Bakhshayesh, M., Zaker, F., Hashemi, M., Katebi, M., & Solaimani, M. (2012). TGF-β1–mediated apoptosis associated with SMAD-dependent mitochondrial Bcl-2 expression. Clinical Lymphoma Myeloma and Leukemia, 12(2), 138–143.

    Article  CAS  Google Scholar 

  87. Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E.-H., Krystal, G., Ali, S., et al. (2002). Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nature Cell Biology, 4(12), 963–969.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, K., Yang, Y., Ge, H., Wang, J., Lei, X., Chen, X., et al. (2022). Neurogenesis and Proliferation of neural stem/progenitor cells conferred by artesunate via FOXO3a/p27Kip1 Axis in mouse stroke model. Molecular Neurobiology, 59(8), 4718–4729.

    Article  CAS  PubMed  Google Scholar 

  89. Dara, A., Arvanitaki, A., Theodorakopoulou, M., Athanasiou, C., Pagkopoulou, E., & Boutou, A. (2021). Non-invasive assessment of endothelial dysfunction in pulmonary arterial hypertension. Mediterranean Journal of Rheumatology, 32(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Donald, A. E., Charakida, M., Cole, T. J., Friberg, P., Chowienczyk, P. J., Millasseau, S. C., et al. (2006). Non-invasive assessment of endothelial function: Which technique? Journal of the American College of Cardiology, 48(9), 1846–1850.

    Article  CAS  PubMed  Google Scholar 

  91. Arrebola-Moreno, A. L., Laclaustra, M., & Kaski, J. C. (2012). Noninvasive assessment of endothelial function in clinical practice. Revista Española de Cardiología (English Edition), 65(1), 80–90.

    Article  Google Scholar 

  92. Ghiadoni, L., Versari, D., Giannarelli, C., Faita, F., & Taddei, S. (2008). Non-invasive diagnostic tools for investigating endothelial dysfunction. Current Pharmaceutical Design, 14(35), 3715–3722.

    Article  CAS  PubMed  Google Scholar 

  93. Cognasse, F., Duchez, A. C., Audoux, E., Ebermeyer, T., Arthaud, C. A., Prier, A., et al. (2022). Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Frontiers in Immunology, 13.

  94. Helbing, T., Olivier, C., Bode, C., Moser, M., & Diehl, P. (2014). Role of microparticles in endothelial dysfunction and arterial hypertension. World Journal of Cardiology, 6(11), 1135–1139.

    Article  PubMed  PubMed Central  Google Scholar 

  95. von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: Bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.

    Article  Google Scholar 

  96. Bambace, N., & Holmes, C. (2011). The platelet contribution to cancer progression. Journal of Thrombosis and Haemostasis, 9(2), 237–249.

    Article  CAS  PubMed  Google Scholar 

  97. Franco, A. T., Corken, A., & Ware, J. (2015). Platelets at the interface of thrombosis, inflammation, and cancer. Blood, The Journal of the American Society of Hematology, 126(5), 582–588.

    CAS  Google Scholar 

  98. Michelson, A. D. (2004). Platelet function testing in cardiovascular diseases. Circulation, 110(19), e489–e493.

    Article  PubMed  Google Scholar 

  99. Cognasse, F., Laradi, S., Berthelot, P., Bourlet, T., Marotte, H., Mismetti, P., et al. (2019). Platelet inflammatory response to stress. Frontiers in Immunology, 10, 1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Blum, A., Vaispapir, V., Keinan-Boker, L., Soboh, S., Yehuda, H., & Tamir, S. (2012). Endothelial dysfunction and procoagulant activity in acute ischemic stroke. Journal of Vascular and Interventional Neurology, 5(1), 33.

    PubMed  PubMed Central  Google Scholar 

  101. Perticone, F., Ceravolo, R., Pujia, A., Ventura, G., Iacopino, S., Scozzafava, A., et al. (2001). Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation, 104(2), 191–196.

    Article  CAS  PubMed  Google Scholar 

  102. MacNamara, J., Eapen, D. J., Quyyumi, A., & Sperling, L. (2015). Novel biomarkers for cardiovascular risk assessment: Current status and future directions. Future Cardiology, 11(5), 597–613.

    Article  CAS  PubMed  Google Scholar 

  103. Khodadi, E. (2020). Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovascular Toxicology, 20(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  104. Galkina, E., & Ley, K. (2009). Immune and inflammatory mechanisms of atherosclerosis. Annual Review of Immunology, 27, 165–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chatterjee, M., Ehrenberg, A., Toska, L. M., Metz, L. M., Klier, M., Krueger, I., et al. (2020). Molecular drivers of platelet activation: Unraveling novel targets for anti-thrombotic and anti-thrombo-inflammatory therapy. International Journal of Molecular Sciences, 21(21), 7906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Tsioufis, K., & Tousoulis, D. (2022). Factors associated with platelet activation-recent pharmaceutical approaches. International Journal of Molecular Sciences, 23(6), 3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grobler, C., Maphumulo, S. C., Grobbelaar, L. M., Bredenkamp, J. C., Laubscher, G. J., Lourens, P. J., et al. (2020). Covid-19: The rollercoaster of fibrin (ogen), d-dimer, von willebrand factor, p-selectin and their interactions with endothelial cells, platelets and erythrocytes. International Journal of Molecular Sciences, 21(14), 5168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, Z., Wu, M., Zeng, L., & Wang, D. (2022). The beneficial role of Nrf2 in the endothelial dysfunction of atherosclerosis. Cardiology Research and Practice, 2022.

  110. Smith, T. L., & Weyrich, A. S. (2011). Platelets as central mediators of systemic inflammatory responses. Thrombosis Research, 127(5), 391–394.

    Article  CAS  PubMed  Google Scholar 

  111. Michelson, A. D. (2010). Antiplatelet therapies for the treatment of cardiovascular disease. Nature Reviews Drug Discovery, 9(2), 154–169.

    Article  CAS  PubMed  Google Scholar 

  112. Lannan, K. L., Sahler, J., Kim, N., Spinelli, S. L., Maggirwar, S. B., Garraud, O., et al. (2015). Breaking the mold: Transcription factors in the anucleate platelet and platelet-derived microparticles. Frontiers in Immunology, 6, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ballerini, P., Dovizio, M., Bruno, A., Tacconelli, S., & Patrignani, P. (2018). P2Y12 receptors in tumorigenesis and metastasis. Frontiers in Pharmacology, 9, 66.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wolska, N., & Rozalski, M. (2019). Blood platelet adenosine receptors as potential targets for anti-platelet therapy. International Journal of Molecular Sciences, 20(21), 5475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, H.-H., & Liao, J. K. (2008). Translational therapeutics of dipyridamole. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), s39–s42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Farooqi, F., Dhawan, N., Morgan, R., Dinh, J., Nedd, K., & Yatzkan, G. (2020). Treatment of severe COVID-19 with tocilizumab mitigates cytokine storm and averts mechanical ventilation during acute respiratory distress: A case report and literature review. Tropical Medicine and Infectious Disease, 5(3), 112.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kitaura, H., Marahleh, A., Ohori, F., Noguchi, T., Nara, Y., Pramusita, A., et al. (2022). Role of the interaction of tumor necrosis factor-α and tumor necrosis factor receptors 1 and 2 in bone-related cells. International Journal of Molecular Sciences, 23(3), 1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, W., Liu, D., Xu, J., Zha, J., Wang, C., An, J., et al. (2022). Astrocyte-derived TNF-α-activated platelets promote cerebral ischemia/reperfusion injury by regulating the RIP1/RIP3/AKT signaling pathway. Molecular Neurobiology, 59(9), 5734–5749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cimmino, G., Loffredo, F. S., De Rosa, G., & Cirillo, P. (2023). Colchicine in athero-thrombosis: molecular mechanisms and clinical evidence. International Journal of Molecular Sciences, 24(3), 2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bonifacio, A., Sanvee ,G. M., Bouitbir, J., & Krähenbühl, S. (2015). The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(8), 1841–1849.

  121. Parihar, S. P., Guler, R., & Brombacher, F. (2019). Statins: A viable candidate for host-directed therapy against infectious diseases. Nature Reviews Immunology, 19(2), 104–117.

    Article  CAS  PubMed  Google Scholar 

  122. Nenna, A., Nappi, F., Lusini, M., Satriano, U. M., Schilirò, D., Spadaccio, C., et al. (2021). Effect of statins on platelet activation and function: From molecular pathways to clinical effects. BioMed Research International, 2021.

  123. West, N. E., Juneja, M., Pinilla, N., De Loose, K. R., Henry, T. D., Baumgard, C. S, et al., (2022) Personalized vascular healthcare: Insights from a large international survey. European Heart Journal Supplements, 24(Supplement_H), H8–H17.

  124. Brugaletta, S., Wijns, W. (2022). Personalized vascular care: Why it is important? European Heart Journal Supplements, 24(Supplement_H), H1–H2.

  125. Scioli, M. G., Storti, G., D’Amico, F., Rodríguez Guzmán, R., Centofanti, F., Doldo, E., et al. (2020). Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: Potential diagnostic biomarkers and therapeutic targets. Journal of Clinical Medicine, 9(6), 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, Y.-C., Lin, F.-Y., Lin, Y.-W., Cheng, S.-M., Chang, C.-C., Lin, R.-H., et al. (2019). Platelet MicroRNA 365–3p expression correlates with high on-treatment platelet reactivity in coronary artery disease patients. Cardiovascular Drugs and Therapy, 33(2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, Y., Wang, Y., Zhang, L., Xia, L., Zheng, M., Zeng, Z., et al. (2020). Reduced platelet miR-223 induction in kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRβ vascular smooth muscle cell axis. Circulation Research, 127(7), 855–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yao, Y., Sun, W., Sun, Q., Jing, B., Liu, S., Liu, X., et al. (2019). Platelet-derived exosomal MicroRNA-25–3p inhibits coronary vascular endothelial cell inflammation through Adam10 via the NF-κB signaling pathway in ApoE−/− mice. Frontiers in Immunology, 10.

  129. Yang, Y., Luo, H., Liu, S., Zhang, R., Zhu, X., Liu, M., et al. (2019). Platelet microparticles-containing miR-4306 inhibits human monocyte-derived macrophages migration through VEGFA/ERK1/2/NF-κB signaling pathways. Clinical and Experimental Hypertension, 41(5), 481–491.

    Article  CAS  PubMed  Google Scholar 

  130. Fan, K., Ruan, X., Wang, L., Lu, W., Shi, Q., & Xu, Y. (2021). Circ_0004872 promotes platelet-derived growth factor-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs via miR-513a-5p/TXNIP axis. Vascular Pharmacology, 140, 106842.

    Article  CAS  PubMed  Google Scholar 

  131. Yang, J., Xu, H., Chen, K., Zheng, D., Liu, S., Zhou, X., et al. (2022). Platelets-derived miR-200a-3p modulate the expression of ET-1 and VEGFA in endothelial cells by targeting MAPK14. Frontiers in Physiology, 13.

  132. Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12(3), 204–212.

    Article  CAS  PubMed  Google Scholar 

  133. Jasiczek, J., Trocha, M., Derkacz, A., Szahidewicz-Krupska, E., & Doroszko, A. (2021). Effect of the renin-angiotensin-aldosterone system reactivity on endothelial function and modulative role of valsartan in male subjects with essential hypertension. Journal of Clinical Medicine, 10(24), 5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gibbins, J. M. (2004). Platelet adhesion signalling and the regulation of thrombus formation. Journal of Cell Science, 117(16), 3415–3425.

    Article  CAS  PubMed  Google Scholar 

  135. Ronaldson, P., & Davis, T. (2017). Mechanisms of endothelial injury and blood-brain barrier dysfunction in stroke (pp. 220–226). Elsevier.

    Google Scholar 

  136. Yoon, S.-S., Kwon, H.-W., Shin, J.-H., Rhee, M. H., Park, C.-E., & Lee, D.-H. (2022). Anti-thrombotic effects of artesunate through regulation of cAMP and PI3K/MAPK pathway on human platelets. International Journal of Molecular Sciences, 23(3), 1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cooper, M. E. (2001). Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia, 44, 1957–1972.

    Article  CAS  PubMed  Google Scholar 

  138. Goumans, M.-J., Liu, Z., & Ten Dijke, P. (2009). TGF-β signaling in vascular biology and dysfunction. Cell Research, 19(1), 116–127.

    Article  CAS  PubMed  Google Scholar 

  139. Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: Pulmonary arterial hypertension. Nature Reviews Cardiology, 8(8), 443–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Humbert, M., Morrell, N. W., Archer, S. L., Stenmark, K. R., MacLean, M. R., Lang, I. M., et al. (2004). Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 43(12S), S13–S24.

    Article  Google Scholar 

  141. Noé, L., Peeters, K., Izzi, B., Van Geet, C., & Freson, K. (2010). Regulators of platelet cAMP levels: Clinical and therapeutic implications. Current Medicinal Chemistry, 17(26), 2897–2905.

    Article  PubMed  Google Scholar 

  142. Ferreiro, J. L., Ueno, M., & Angiolillo, D. J. (2009). Cangrelor: A review on its mechanism of action and clinical development. Expert Review of Cardiovascular Therapy, 7(10), 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  143. Mansour, A., Bachelot-Loza, C., Nesseler, N., Gaussem, P., & Gouin-Thibault, I. (2020). P2Y12 inhibition beyond thrombosis: Effects on inflammation. International Journal of Molecular Sciences, 21(4), 1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hantgan, R. R., Stahle, M. C., Jerome, G. W., Nagaswami, C., & Weisel, J. W. (2002). Tirofiban blocks platelet adhesion to fibrin with minimal perturbation of GpIIb/IIIa structure. Thrombosis and Haemostasis, 87(05), 910–917.

    Article  CAS  PubMed  Google Scholar 

  145. Choi, J.-H., Park, S.-E., Kim, S.-J., & Kim, S. (2015). Kaempferol inhibits thrombosis and platelet activation. Biochimie, 115, 177–186.

    Article  CAS  PubMed  Google Scholar 

  146. Goto, S. (2005). Cilostazol: Potential mechanism of action for antithrombotic effects accompanied by a low rate of bleeding. Atherosclerosis Supplements, 6(4), 3–11.

    Article  CAS  PubMed  Google Scholar 

  147. Schafer, A. I. (1995). Effects of nonsteroidal antiinflammatory drugs on platelet function and systemic hemostasis. The Journal of Clinical Pharmacology, 35(3), 209–219.

    Article  CAS  PubMed  Google Scholar 

  148. Abdulsattar, Y., Ternas, T., & Garcia, D. (2011). Vorapaxar: Targeting a novel antiplatelet pathway. Pharmacy and Therapeutics, 36(9), 564.

    PubMed  PubMed Central  Google Scholar 

  149. Serebruany, V. L., Glassman, A. H., Malinin, A. I., Sane, D. C., Finkel, M. S., Krishnan, R. R., et al. (2003). Enhanced platelet/endothelial activation in depressed patients with acute coronary syndromes: Evidence from recent clinical trials. Blood Coagulation & Fibrinolysis, 14(6), 563–567.

    Article  Google Scholar 

  150. Berg, D. D., Yeh, R. W., Mauri, L., Morrow, D. A., Kereiakes, D. J., Cutlip, D. E., et al. (2021). Biomarkers of platelet activation and cardiovascular risk in the DAPT trial. Journal of Thrombosis and Thrombolysis, 51(3), 675–681.

    Article  PubMed  Google Scholar 

  151. Ford, I., Scott Neil, W., Herd, V., Mitchell Louise, R., Williams David, J. P., & Brittenden, J. (2014). A Randomized controlled trial of platelet activity before and after cessation of clopidogrel therapy in patients with stable cardiovascular disease. Journal of the American College of Cardiology, 63(3), 233–239.

    Article  CAS  PubMed  Google Scholar 

  152. Angiolillo Dominick, J., Bernardo, E., Sabaté, M., Jimenez-Quevedo, P., Costa Marco, A., Palazuelos, J., et al. (2007). Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. Journal of the American College of Cardiology, 50(16), 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  153. Rino, M., Cecilia, B., Raffaele, P., Giovanni, D., Maria Cristina, V., Giuseppe, G., et al. (2007). Endothelial dysfunction in patients with spontaneous venous thromboembolism. Haematologica, 92(6), 812–818.

    Article  Google Scholar 

  154. Xu, X., Liu, Y., Li, K., Wang, P., Xu, L., Yang, Z., et al. (2016). Intensive atorvastatin improves endothelial function and decreases ADP-induced platelet aggregation in patients with STEMI undergoing primary PCI: A single-center randomized controlled trial. International Journal of Cardiology, 222, 467–472.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish thank you of all our colleague in Iranian Blood Transfusion organization.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Rezaeeyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent Form

This study does not use animal or human samples.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, N., Bordbar, A., Bavarsad, S.S. et al. Molecular Insights into the Relationship Between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice. Mol Biotechnol 66, 932–947 (2024). https://doi.org/10.1007/s12033-023-01010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01010-8

Keywords

Navigation