FEYNMAN'S THESIS A New Approach to Quantum Theory

Editor

Laurie M. Brown Northwestern University, USA

Contents

Preface	vii
The Principle of Least Action in Quantum Mechanics R. P. Feynman	
I. Introduction	1
II. Least Action in Classical Mechanics	6
1. The Concept of Functional	6
2. The Principle of Least Action	9
3. Conservation of Energy. Constants of the Motion	10
4. Particles Interacting through an Intermediate Oscillator	16
III. Least Action in Quantum Mechanics	24
1. The Lagrangian in Quantum Mechanics	26
2. The Calculation of Matrix Elements in the Language of a Lagrangian	32
3. The Equations of Motion in Lagrangian Form	34
4. Translation to the Ordinary Notation of Quantum Mechanics	39
5. The Generalization to Any Action Function	41
6. Conservation of Energy. Constants of the Motion	42
7. The Role of the Wave Function	44
8. Transition Probabilities	46
9. Expectation Values for Observables	49
10. Application to the Forced Harmonic Oscillator	55
11. Particles Interacting through an Intermediate Oscillator	61
12. Conclusion	68