Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
Search in libraries
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Subjects(RVK)
Access
  • 1
    Book
    Book
    Amsterdam [u.a.] : Elsevier, Newes
    UID:
    b3kat_BV036337648
    Format: XXII, 457 S. , Ill., graph. Darst.
    Edition: 2nd ed.
    ISBN: 9781856179638
    Language: English
    Subjects: Computer Science , Engineering
    RVK:
    RVK:
    Keywords: Mikroprozessor ; Eingebettetes System ; ARM Cortex-M3 ; ARM ; Mikrocontroller ; Eingebettetes System ; ARM Cortex-M4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam [u.a.] :Elsevier, Newes,
    UID:
    almahu_BV042244077
    Format: 1 Online-Ressource (XXII, 457 S.) : , Ill., graph. Darst.
    Edition: 2nd ed.
    ISBN: 978-1-85617-963-8
    Language: English
    Subjects: Computer Science , Engineering
    RVK:
    RVK:
    Keywords: Mikroprozessor ; Eingebettetes System ; ARM Cortex-M3 ; ARM ; Mikrocontroller ; Eingebettetes System ; ARM Cortex-M4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam [u.a.] :Newnes/Elsevier,
    UID:
    edoccha_BV042314821
    Format: 1 Online-Ressource (XXII, 457 S.) : , Ill., graph. Darst.
    Edition: 2. ed.
    ISBN: 978-1-85617-964-5 , 1-85617-964-8
    Note: This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technology Migrating effectively from the ARM7 The Memory Protection Unit Interfaces, Exceptions, Interrupts ... and much more! The only available guide to programming and using the groundbreaking ARM Cortex-M3 processor Easy-to-understand examples, diagrams, quick reference appendices, full instruction and Thumb-2 instruction sets are included€ T teaches end users how to start from the ground up with the M3, and how to migrate from the ARM7. - Includes bibliographical references and index
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-1-85617-963-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 1-85617-963-X
    Language: English
    Subjects: Computer Science , Engineering
    RVK:
    RVK:
    Keywords: Mikroprozessor ; Eingebettetes System ; ARM Cortex-M3 ; ARM ; Mikrocontroller ; Eingebettetes System ; ARM Cortex-M4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam [u.a.] :Newnes/Elsevier,
    UID:
    edocfu_BV042314821
    Format: 1 Online-Ressource (XXII, 457 S.) : , Ill., graph. Darst.
    Edition: 2. ed.
    ISBN: 978-1-85617-964-5 , 1-85617-964-8
    Note: This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technology Migrating effectively from the ARM7 The Memory Protection Unit Interfaces, Exceptions, Interrupts ... and much more! The only available guide to programming and using the groundbreaking ARM Cortex-M3 processor Easy-to-understand examples, diagrams, quick reference appendices, full instruction and Thumb-2 instruction sets are included€ T teaches end users how to start from the ground up with the M3, and how to migrate from the ARM7. - Includes bibliographical references and index
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-1-85617-963-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 1-85617-963-X
    Language: English
    Subjects: Computer Science , Engineering
    RVK:
    RVK:
    Keywords: Mikroprozessor ; Eingebettetes System ; ARM Cortex-M3 ; ARM ; Mikrocontroller ; Eingebettetes System ; ARM Cortex-M4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam ; : Newnes,
    UID:
    almahu_9947368691902882
    Format: 1 online resource (481 p.)
    Edition: 2nd ed.
    ISBN: 1-282-75584-6 , 9786612755842 , 1-85617-964-8
    Content: This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technologyMi
    Note: Description based upon print version of record. , Front Cover; Half Title Page; The Definitive Guide to the ARM Cortex-M3; Copyright Page; Table of Contents; Foreword; Foreword; Preface; Acknowledgments; Conventions; Terms and Abbreviations; Chapter 1. Introduction; 1.1 What Is the ARM Cortex-M3 Processor?; 1.2 Background of ARM and ARM Architecture; 1.2.1 A Brief History; 1.2.2 Architecture Versions; 1.2.3 Processor Naming; 1.3 Instruction Set Development; 1.4 The Thumb-2 Technology and Instruction Set Architecture; 1.5 Cortex-M3 Processor Applications; 1.6 Organization of This Book; 1.7 Further Reading; Chapter 2. Overview of the Cortex-M3 , 2.1 Fundamentals2.2 Registers; 2.2.1 R0-R12: General-Purpose Registers; 2.2.2 R13: Stack Pointers; 2.2.3 R14: The Link Register; 2.2.4 R15: The Program Counter; 2.2.5 Special Registers; 2.3 Operation Modes; 2.4 The Built-In Nested Vectored Interrupt Controller; 2.4.1 Nested Interrupt Support; 2.4.2 Vectored Interrupt Support; 2.4.3 Dynamic Priority Changes Support; 2.4.4 Reduction of Interrupt Latency; 2.4.5 Interrupt Masking; 2.5 The Memory Map; 2.6 The Bus Interface; 2.7 The MPU; 2.8 The Instruction Set; 2.9 Interrupts and Exceptions; 2.9.1 Low Power and High Energy Efficiency , 2.10 Debugging Support2.11 Characteristics Summary; 2.11.1 High Performance; 2.11.2 Advanced Interrupt-Handling Features; 2.11.3 Low Power Consumption; 2.11.4 System Features; 2.11.5 Debug Supports; Chapter 3. Cortex-M3 Basics; 3.1 Registers; 3.1.1 General Purpose Registers R0 through R7; 3.1.2 General Purpose Registers R8 through R12; 3.1.3 Stack Pointer R13; 3.1.4 Link Register R14; 3.1.5 Program Counter R15; 3.2 Special Registers; 3.2.1 Program Status Registers; 3.2.2 PRIMASK, FAULTMASK, and BASEPRI Registers; 3.2.3 The Control Register; 3.3 Operation Mode; 3.4 Exceptions and Interrupts , 3.5 Vector Tables3.6 Stack Memory Operations; 3.6.1 Basic Operations of the Stack; 3.6.2 Cortex-M3 Stack Implementation; 3.6.3 The Two-Stack Model in the Cortex-M3; 3.7 Reset Sequence; Chapter 4. Instruction Sets; 4.1 Assembly Basics; 4.1.1 Assembler Language: Basic Syntax; 4.1.2 Assembler Language: Use of Suffixes; 4.1.3 Assembler Language: Unified Assembler Language; 4.2 Instruction List; 4.2.1 Unsupported Instructions; 4.3 Instruction Descriptions; 4.3.1 Assembler Language: Moving Data; 4.3.2 LDR and ADR Pseudo-Instructions; 4.3.3 Assembler Language: Processing Data , 4.3.4 Assembler Language: Call and Unconditional Branch4.3.5 Assembler Language: Decisions and Conditional Branches; 4.3.6 Assembler Language: Combined Compare and Conditional Branch; 4.3.7 Assembler Language: Instruction Barrier and Memory Barrier Instructions; 4.3.8 Assembly Language: Saturation Operations; 4.4 Several Useful Instructions in the Cortex-M3; 4.4.1 MSR and MRS; 4.4.2 More on the IF-THEN Instruction Block; 4.4.3 SDIV and UDIV; 4.4.4 REV, REVH, and REVSH; 4.4.5 Reverse Bit; 4.4.6 SXTB, SXTH, UXTB, and UXTH; 4.4.7 Bit Field Clear and Bit Field Insert; 4.4.8 UBFX and SBFX , 4.4.9 LDRD and STRD , English
    Additional Edition: ISBN 1-85617-963-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam ; : Newnes,
    UID:
    edocfu_9958086274002883
    Format: 1 online resource (481 p.)
    Edition: 2nd ed.
    ISBN: 1-282-75584-6 , 9786612755842 , 1-85617-964-8
    Content: This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technologyMi
    Note: Description based upon print version of record. , Front Cover; Half Title Page; The Definitive Guide to the ARM Cortex-M3; Copyright Page; Table of Contents; Foreword; Foreword; Preface; Acknowledgments; Conventions; Terms and Abbreviations; Chapter 1. Introduction; 1.1 What Is the ARM Cortex-M3 Processor?; 1.2 Background of ARM and ARM Architecture; 1.2.1 A Brief History; 1.2.2 Architecture Versions; 1.2.3 Processor Naming; 1.3 Instruction Set Development; 1.4 The Thumb-2 Technology and Instruction Set Architecture; 1.5 Cortex-M3 Processor Applications; 1.6 Organization of This Book; 1.7 Further Reading; Chapter 2. Overview of the Cortex-M3 , 2.1 Fundamentals2.2 Registers; 2.2.1 R0-R12: General-Purpose Registers; 2.2.2 R13: Stack Pointers; 2.2.3 R14: The Link Register; 2.2.4 R15: The Program Counter; 2.2.5 Special Registers; 2.3 Operation Modes; 2.4 The Built-In Nested Vectored Interrupt Controller; 2.4.1 Nested Interrupt Support; 2.4.2 Vectored Interrupt Support; 2.4.3 Dynamic Priority Changes Support; 2.4.4 Reduction of Interrupt Latency; 2.4.5 Interrupt Masking; 2.5 The Memory Map; 2.6 The Bus Interface; 2.7 The MPU; 2.8 The Instruction Set; 2.9 Interrupts and Exceptions; 2.9.1 Low Power and High Energy Efficiency , 2.10 Debugging Support2.11 Characteristics Summary; 2.11.1 High Performance; 2.11.2 Advanced Interrupt-Handling Features; 2.11.3 Low Power Consumption; 2.11.4 System Features; 2.11.5 Debug Supports; Chapter 3. Cortex-M3 Basics; 3.1 Registers; 3.1.1 General Purpose Registers R0 through R7; 3.1.2 General Purpose Registers R8 through R12; 3.1.3 Stack Pointer R13; 3.1.4 Link Register R14; 3.1.5 Program Counter R15; 3.2 Special Registers; 3.2.1 Program Status Registers; 3.2.2 PRIMASK, FAULTMASK, and BASEPRI Registers; 3.2.3 The Control Register; 3.3 Operation Mode; 3.4 Exceptions and Interrupts , 3.5 Vector Tables3.6 Stack Memory Operations; 3.6.1 Basic Operations of the Stack; 3.6.2 Cortex-M3 Stack Implementation; 3.6.3 The Two-Stack Model in the Cortex-M3; 3.7 Reset Sequence; Chapter 4. Instruction Sets; 4.1 Assembly Basics; 4.1.1 Assembler Language: Basic Syntax; 4.1.2 Assembler Language: Use of Suffixes; 4.1.3 Assembler Language: Unified Assembler Language; 4.2 Instruction List; 4.2.1 Unsupported Instructions; 4.3 Instruction Descriptions; 4.3.1 Assembler Language: Moving Data; 4.3.2 LDR and ADR Pseudo-Instructions; 4.3.3 Assembler Language: Processing Data , 4.3.4 Assembler Language: Call and Unconditional Branch4.3.5 Assembler Language: Decisions and Conditional Branches; 4.3.6 Assembler Language: Combined Compare and Conditional Branch; 4.3.7 Assembler Language: Instruction Barrier and Memory Barrier Instructions; 4.3.8 Assembly Language: Saturation Operations; 4.4 Several Useful Instructions in the Cortex-M3; 4.4.1 MSR and MRS; 4.4.2 More on the IF-THEN Instruction Block; 4.4.3 SDIV and UDIV; 4.4.4 REV, REVH, and REVSH; 4.4.5 Reverse Bit; 4.4.6 SXTB, SXTH, UXTB, and UXTH; 4.4.7 Bit Field Clear and Bit Field Insert; 4.4.8 UBFX and SBFX , 4.4.9 LDRD and STRD , English
    Additional Edition: ISBN 1-85617-963-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Amsterdam ; : Newnes,
    UID:
    edoccha_9958086274002883
    Format: 1 online resource (481 p.)
    Edition: 2nd ed.
    ISBN: 1-282-75584-6 , 9786612755842 , 1-85617-964-8
    Content: This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technologyMi
    Note: Description based upon print version of record. , Front Cover; Half Title Page; The Definitive Guide to the ARM Cortex-M3; Copyright Page; Table of Contents; Foreword; Foreword; Preface; Acknowledgments; Conventions; Terms and Abbreviations; Chapter 1. Introduction; 1.1 What Is the ARM Cortex-M3 Processor?; 1.2 Background of ARM and ARM Architecture; 1.2.1 A Brief History; 1.2.2 Architecture Versions; 1.2.3 Processor Naming; 1.3 Instruction Set Development; 1.4 The Thumb-2 Technology and Instruction Set Architecture; 1.5 Cortex-M3 Processor Applications; 1.6 Organization of This Book; 1.7 Further Reading; Chapter 2. Overview of the Cortex-M3 , 2.1 Fundamentals2.2 Registers; 2.2.1 R0-R12: General-Purpose Registers; 2.2.2 R13: Stack Pointers; 2.2.3 R14: The Link Register; 2.2.4 R15: The Program Counter; 2.2.5 Special Registers; 2.3 Operation Modes; 2.4 The Built-In Nested Vectored Interrupt Controller; 2.4.1 Nested Interrupt Support; 2.4.2 Vectored Interrupt Support; 2.4.3 Dynamic Priority Changes Support; 2.4.4 Reduction of Interrupt Latency; 2.4.5 Interrupt Masking; 2.5 The Memory Map; 2.6 The Bus Interface; 2.7 The MPU; 2.8 The Instruction Set; 2.9 Interrupts and Exceptions; 2.9.1 Low Power and High Energy Efficiency , 2.10 Debugging Support2.11 Characteristics Summary; 2.11.1 High Performance; 2.11.2 Advanced Interrupt-Handling Features; 2.11.3 Low Power Consumption; 2.11.4 System Features; 2.11.5 Debug Supports; Chapter 3. Cortex-M3 Basics; 3.1 Registers; 3.1.1 General Purpose Registers R0 through R7; 3.1.2 General Purpose Registers R8 through R12; 3.1.3 Stack Pointer R13; 3.1.4 Link Register R14; 3.1.5 Program Counter R15; 3.2 Special Registers; 3.2.1 Program Status Registers; 3.2.2 PRIMASK, FAULTMASK, and BASEPRI Registers; 3.2.3 The Control Register; 3.3 Operation Mode; 3.4 Exceptions and Interrupts , 3.5 Vector Tables3.6 Stack Memory Operations; 3.6.1 Basic Operations of the Stack; 3.6.2 Cortex-M3 Stack Implementation; 3.6.3 The Two-Stack Model in the Cortex-M3; 3.7 Reset Sequence; Chapter 4. Instruction Sets; 4.1 Assembly Basics; 4.1.1 Assembler Language: Basic Syntax; 4.1.2 Assembler Language: Use of Suffixes; 4.1.3 Assembler Language: Unified Assembler Language; 4.2 Instruction List; 4.2.1 Unsupported Instructions; 4.3 Instruction Descriptions; 4.3.1 Assembler Language: Moving Data; 4.3.2 LDR and ADR Pseudo-Instructions; 4.3.3 Assembler Language: Processing Data , 4.3.4 Assembler Language: Call and Unconditional Branch4.3.5 Assembler Language: Decisions and Conditional Branches; 4.3.6 Assembler Language: Combined Compare and Conditional Branch; 4.3.7 Assembler Language: Instruction Barrier and Memory Barrier Instructions; 4.3.8 Assembly Language: Saturation Operations; 4.4 Several Useful Instructions in the Cortex-M3; 4.4.1 MSR and MRS; 4.4.2 More on the IF-THEN Instruction Block; 4.4.3 SDIV and UDIV; 4.4.4 REV, REVH, and REVSH; 4.4.5 Reverse Bit; 4.4.6 SXTB, SXTH, UXTB, and UXTH; 4.4.7 Bit Field Clear and Bit Field Insert; 4.4.8 UBFX and SBFX , 4.4.9 LDRD and STRD , English
    Additional Edition: ISBN 1-85617-963-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages