feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Subjects(RVK)
Keywords
Access
  • 1
    Book
    Book
    Amsterdam, Netherlands : Elsevier
    UID:
    b3kat_BV044718233
    Format: xv, 964 pages , Illustrationen, Diagramme , 24 cm
    ISBN: 9780128112403 , 0128112409
    Note: Includes bibliographical references and index
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Hydroakustik
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edoccha_9960161242702883
    Format: 1 online resource (982 pages) : , illustrations
    ISBN: 0-12-811247-6 , 0-12-811240-9
    Content: Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. Provides a complete and up-to-date treatment of all major subjects of underwater acoustics Presents chapters written by recognized experts in their individual field Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics Includes a comprehensive list of literature references for each chapter.
    Note: Front Cover -- Applied Underwater Acoustics -- Applied Underwater Acoustics -- Copyright -- Dedication -- Contents -- List of Contributors -- Preface -- 1 - General Characteristics of the Underwater Environment -- 1.1 INTRODUCTION -- 1.2 A BRIEF EXPOSITION OF THE HISTORY OF UNDERWATER ACOUSTICS -- 1.2.1 UNDERWATER ACOUSTICS BEFORE 1912 -- 1.2.2 THE YEARS 1912 THROUGH 1918 -- 1.2.3 THE YEARS 1919 THROUGH 1939 -- 1.2.4 THE YEARS 1940 THROUGH 1946 -- 1.2.5 THE YEARS AFTER 1946 -- 1.3 INTERNATIONAL STANDARD UNITS -- 1.4 THE DECIBEL SCALES -- 1.5 FEATURES OF OCEANOGRAPHY -- 1.5.1 SOUND SPEED PROFILES -- 1.5.2 THERMOCLINES -- 1.5.3 ARCTIC REGIONS -- 1.5.4 DEEP ISOTHERMAL LAYERS -- 1.5.5 EXPRESSIONS FOR THE SPEED OF SOUND -- 1.5.6 SURFACE WAVES -- 1.5.7 INTERNAL WAVES -- 1.5.8 BUBBLES FROM WAVE BREAKING -- 1.5.9 OCEAN ACIDIFICATION -- 1.5.10 DEEP-OCEAN HYDROTHERMAL FLOWS -- 1.5.11 EDDIES, FRONTS, AND LARGE-SCALE TURBULENCE -- 1.5.12 DIURNAL AND SEASONAL CHANGES -- 1.6 SONAR EQUATIONS -- 1.6.1 DEFINITIONS OF THE SONAR EQUATION TERMS -- 1.6.2 SONAR EQUATIONS -- 1.7 ABBREVIATIONS -- Acknowledgment -- REFERENCES -- 2 - Sound Propagation -- 2.1 THE CONCEPT OF WAVES -- 2.1.1 THE WAVE EQUATION FOR AN INVISCID FLUID -- 2.1.2 THE HELMHOLTZ EQUATION -- 2.1.3 HARMONIC WAVES -- 2.1.4 PLANE WAVES -- 2.1.5 CYLINDRICAL WAVES -- 2.1.6 SPHERICAL WAVES -- 2.1.7 PLANE WAVE DECOMPOSITION OF A SPHERICAL WAVE -- 2.2 SOUND PROPAGATION IN A VISCOUS FLUID -- 2.2.1 DISPERSION FORMULAS -- 2.2.2 KRAMERS-KRONIG DISPERSION RELATIONS -- 2.2.3 CAUSALITY AND STOKES' EQUATION -- 2.2.4 PULSE PROPAGATION IN A VISCOUS FLUID -- 2.3 SOUND WAVES AND SHEAR WAVES IN MARINE SEDIMENTS -- 2.3.1 THE BIOT THEORY -- 2.3.2 THE GRAIN-SHEARING THEORY -- 2.4 SOURCE OR RECEIVER IN MOTION -- 2.4.1 DOPPLER FREQUENCY SHIFTS (SOURCE STATIONARY, OBSERVER IN MOTION). , 2.4.2 DOPPLER FREQUENCY SHIFTS (OBSERVER STATIONARY, SOURCE IN MOTION) -- 2.4.3 ACOUSTIC FIELD FROM A MOVING SOURCE -- 2.5 SOUND REFLECTION AND TRANSMISSION AT A FLUID-FLUID BOUNDARY -- 2.5.1 STRUCTURE OF THE SOLUTION -- 2.5.2 THE STATIONARY PHASE APPROXIMATION -- 2.5.3 PLANE-WAVE REFLECTION -- 2.5.4 WESTON'S EFFECTIVE DEPTH -- 2.5.5 PLANE-WAVE REFRACTION -- 2.5.6 THE LATERAL WAVE -- 2.6 THE "IDEAL" WAVEGUIDE -- 2.6.1 PLANE WAVES AND NORMAL MODES -- 2.6.2 THE ACOUSTIC FIELD IN THE IDEAL WAVEGUIDE -- 2.6.3 INTERMODAL INTERFERENCE -- 2.7 THE PEKERIS CHANNEL -- 2.7.1 THE INTEGRAL-TRANSFORM SOLUTION FOR THE FIELD -- 2.7.2 THE NORMAL MODE SOLUTION -- 2.7.3 THE CHARACTERISTIC EQUATION -- 2.8 THREE-DIMENSIONAL PROPAGATION -- 2.8.1 HORIZONTAL REFRACTION -- 2.8.2 THE "IDEAL" WEDGE -- 2.8.3 THE SHADOW EDGE -- 2.8.4 INTRAMODAL INTERFERENCE -- 2.8.5 THE PENETRABLE WEDGE -- Acknowledgment -- REFERENCES -- 3 - Sound Propagation Modeling -- 3.1 RAY MODELS -- 3.1.1 A PARTICULAR TYPE OF ANALYTIC 2-D RAY TRACING -- 3.1.1.1 Kinematic Ray Tracing -- 3.1.1.2 Dynamic Ray Tracing -- 3.1.1.3 Caustics -- 3.1.1.4 Coherent Computation of Propagation Loss and Propagation Time Series -- 3.1.2 EXAMPLE -- 3.2 WAVE NUMBER INTEGRATION OR SPECTRAL METHODS -- 3.2.1 SOLUTION OF THE DEPTH-DEPENDENT ODE SYSTEMS -- 3.2.1.1 Recursive Computation of Reflection-Coefficient Matrices for the Solid Bottom -- 3.2.1.2 Propagator Matrices for the Fluid Region -- 3.2.1.3 Alternative Treatment of the Fluid Region -- 3.2.1.4 Final Remarks -- 3.2.2 ADAPTIVE INTEGRATION -- 3.2.3 EXAMPLE -- 3.3 NORMAL MODE PROPAGATION MODELS -- 3.3.1 MODAL WAVE NUMBERS -- 3.3.2 MODE FUNCTIONS -- 3.3.3 EXCITATION COEFFICIENTS -- 3.3.4 RANGE-DEPENDENT MEDIA -- 3.3.4.1 Equations Relating the Modal Expansion Coefficients -- 3.3.4.2 Solution in Terms of Reflection-Coefficient Matrices -- 3.3.4.3 Final Remarks. , 3.3.5 EXAMPLES -- 3.3.5.1 Range-Invariant Media -- 3.3.5.2 Range-Dependent Media -- 3.4 PARABOLIC EQUATION METHODS -- 3.4.1 INTERFACE CONDITIONS AT THE VERTICAL RANGE-SEGMENT INTERFACES -- 3.4.2 NUMERICAL SOLUTION METHODS -- 3.4.2.1 Start Solution -- 3.4.2.2 Rational-Function Approximations for the Relevant Operators -- 3.4.2.3 Depth Discretization and Range Integration -- 3.4.3 EXTENDED AND ALTERNATIVE PE APPROACHES -- 3.4.3.1 Extension to Media That Vary Regionwise Smoothly With Range and Depth -- 3.4.3.2 Coordinate Transformation Techniques -- 3.4.3.3 Two-Way PE Approaches -- 3.4.3.4 Extension to Fluid-Solid Media -- 3.4.4 EXAMPLES -- 3.5 FINITE-DIFFERENCE AND FINITE-ELEMENT METHODS -- 3.5.1 ONE-DIMENSIONAL FEM AND FDM FOR PARABOLIC AND NORMAL-MODE EQUATIONS -- 3.5.1.1 Application to Normal Modes -- 3.5.2 TWO-DIMENSIONAL FEM AND FDM FOR THE HELMHOLTZ EQUATION -- 3.5.2.1 FEM Discretization -- 3.5.2.2 FDM Discretization -- 3.5.2.3 Methods to Solve the Linear Equation System and Possibilities to Reduce Its Size -- 3.5.3 TIME-DOMAIN MODELING -- 3.5.3.1 FEM Discretization -- 3.5.3.2 FDM Discretization -- 3.5.3.3 Numerical Dispersion, Time Integration, and Stability -- 3.5.3.4 Including Absorption -- 3.5.3.5 Some Recent Developments -- 3.5.4 EXAMPLES -- 3.6 3-D SOUND PROPAGATION MODELS -- 3.6.1 MODELING HORIZONTAL REFRACTION BY A SLOPING BOTTOM OR CHANGING SOUND-SPEED PROFILE -- 3.6.1.1 Fourier Transformation With Respect to the y-Coordinate -- 3.6.1.2 Equations Relating the Modal Expansion Coefficients -- 3.6.1.3 Solution in Terms of Reflection-Coefficient Matrices -- 3.6.1.4 Final Remarks -- 3.6.2 MODELING DIFFRACTION AROUND A CYLINDRICALLY SYMMETRIC ANOMALY -- 3.6.2.1 Fourier Series With Respect to the φ Coordinate -- 3.6.2.2 Equations Relating the Modal Expansion Coefficients -- 3.6.2.3 Solution in Terms of Reflection-Coefficient Matrices. , 3.6.2.4 Final Remarks -- 3.6.3 EXAMPLES -- LIST OF ABBREVIATIONS AND SYMBOLS -- Acknowledgments -- REFERENCES -- 4 - Absorption of Sound in Seawater -- 4.1 PHYSICS AND PHENOMENA -- 4.2 EXPERIMENTAL DATA -- 4.2.1 ABSORPTION PRESSURE DEPENDENCE -- 4.2.2 ABSORPTION TEMPERATURE DEPENDENCE -- 4.2.3 PH DEPENDENCE OF ABSORPTION -- 4.2.4 SALINITY DEPENDENCE -- 4.3 SOUND ABSORPTION MECHANISMS -- 4.3.1 SOUND ABSORPTION IN FRESHWATER -- 4.3.2 MOLECULAR CHEMICAL RELAXATION PROCESSES -- 4.3.2.1 Temperature Dependence -- 4.3.2.2 Pressure Effects -- 4.4 FORMULAS AND EXPRESSIONS -- 4.4.1 FRANCOIS AND GARRISON EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.4.1.1 Boric Acid Coefficients -- 4.4.1.2 Magnesium Sulfate Coefficients -- 4.4.1.3 Pure Water Contribution -- 4.4.2 AINSLIE AND MCCOLM SIMPLIFIED EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.5 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 5 - Scattering of Sound -- 5.1 PHYSICS AND PHENOMENA -- 5.2 SCATTERING FROM POINT-LIKE OBJECTS -- 5.2.1 SINGLE OBJECTS -- 5.2.1.1 Rigid and Elastic Spheres -- 5.2.1.2 Gas Bubbles -- 5.2.1.3 Single Fish -- 5.2.1.4 Canonically Shaped Objects -- 5.2.1.5 Submarines -- 5.2.2 MULTIPLE OBJECTS -- 5.2.2.1 Fish Schools -- 5.2.2.2 Bubble Clouds -- 5.2.2.3 Deep Scattering Layer -- 5.2.2.4 Suspended Sediments -- 5.3 SCATTERING FROM EXTENDED, NEARLY PLANE, ROUGH SURFACES -- 5.3.1 BRAGG SCATTERING -- 5.3.2 REFLECTION FROM FACETS -- 5.3.3 LAMBERT'S LAW -- 5.3.4 SCATTERING FROM THE SEA SURFACE -- 5.3.5 SCATTERING FROM THE SEABED -- 5.4 THEORETICAL BASIS FOR SCATTERING CALCULATIONS -- 5.4.1 THE PERTURBATION APPROXIMATION -- 5.4.2 THE HELMHOLTZ-KIRCHHOFF METHOD -- 5.4.3 SCATTERING FROM SURFACES WITH TWO SCALES OF ROUGHNESS -- 5.5 SCATTERING FROM CURVED, ROUGH SURFACES -- 5.6 REVERBERATION -- 5.7 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 6 - Ambient Noise -- 6.1 PHYSICS AND PHENOMENA. , 6.2 SOURCES OF AMBIENT NOISE -- 6.2.1 TIDES AND HYDROSTATIC EFFECTS OF WAVES -- 6.2.2 SEISMIC ACTIVITIES -- 6.2.3 TURBULENCE -- 6.2.4 SURFACE PHENOMENA -- 6.2.4.1 Breaking Waves -- 6.2.4.2 Nonlinear Wave-Wave Interaction -- 6.2.4.3 Bubbles -- 6.2.5 PRECIPITATION -- 6.2.6 BIOLOGICAL ACTIVITY -- 6.2.7 ICE NOISE -- 6.2.8 SHIPPING -- 6.2.9 OTHER MAN-MADE (ANTHROPOGENIC) SOURCES -- 6.2.10 SEDIMENT FLOW-GENERATED NOISE -- 6.2.11 THERMAL NOISE -- 6.3 SPECTRA OF AMBIENT NOISE -- 6.3.1 DEEP-WATER SPECTRA -- 6.3.2 SHALLOW-WATER SPECTRA -- 6.4 DIRECTIVITY OF AMBIENT NOISE -- 6.4.1 NOISE PROPAGATION -- 6.5 COHERENCE OF AMBIENT NOISE -- 6.6 SELF-NOISE -- 6.7 AMPLITUDE DISTRIBUTIONS FOR UNDERWATER NOISE -- 6.8 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 7 - Shallow-Water Acoustics -- 7.1 WHAT IS SHALLOW-WATER ACOUSTICS? -- 7.1.1 MILITARY APPLICATIONS -- 7.1.2 DUAL-USE APPLICATIONS -- 7.1.3 OCEAN SCIENCES APPLICATIONS -- 7.1.4 COMMERCIAL APPLICATIONS -- 7.2 PHYSICS AND PHENOMENA -- 7.2.1 SOURCE LEVEL TERM -- 7.2.1.1 Example: Integrating Pseudorandom Noise Sequences and Frequency Modulation Sweeps for Signal Gain -- 7.2.2 ARRAY GAIN TERM -- 7.2.2.1 Examples: Mode Filtration Techniques in Shallow Water -- 7.2.2.1.1 Time Resolution of Modes -- 7.2.2.1.2 Amplitude-Shaded Vertical Array Mode Resolution -- 7.2.2.1.3 Vertical Array Steering -- 7.2.2.1.4 Horizontal Array Steering -- 7.2.2.1.5 Focused Array Mode Filtration -- 7.2.3 TRANSMISSION LOSS TERM -- 7.2.3.1 Simple Geometric Spreading Intensity Arguments -- 7.2.3.2 Popular Propagation Theories and Their Application(s) to Shallow Water -- 7.2.3.2.1 Ray Theory -- 7.2.3.2.2 Normal Modes and Shallow Water -- 7.2.3.2.3 Vertical Modes and Horizontal Rays -- 7.2.3.2.3.1 Example: Ducting Between Nonlinear Internal Waves -- 7.2.3.2.4 Parabolic Equation -- 7.2.3.2.5 Wave Number Integration -- 7.2.4 AMBIENT NOISE TERM. , 7.2.5 REVERBERATION TERM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edocfu_9960161242702883
    Format: 1 online resource (982 pages) : , illustrations
    ISBN: 0-12-811247-6 , 0-12-811240-9
    Content: Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. Provides a complete and up-to-date treatment of all major subjects of underwater acoustics Presents chapters written by recognized experts in their individual field Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics Includes a comprehensive list of literature references for each chapter.
    Note: Front Cover -- Applied Underwater Acoustics -- Applied Underwater Acoustics -- Copyright -- Dedication -- Contents -- List of Contributors -- Preface -- 1 - General Characteristics of the Underwater Environment -- 1.1 INTRODUCTION -- 1.2 A BRIEF EXPOSITION OF THE HISTORY OF UNDERWATER ACOUSTICS -- 1.2.1 UNDERWATER ACOUSTICS BEFORE 1912 -- 1.2.2 THE YEARS 1912 THROUGH 1918 -- 1.2.3 THE YEARS 1919 THROUGH 1939 -- 1.2.4 THE YEARS 1940 THROUGH 1946 -- 1.2.5 THE YEARS AFTER 1946 -- 1.3 INTERNATIONAL STANDARD UNITS -- 1.4 THE DECIBEL SCALES -- 1.5 FEATURES OF OCEANOGRAPHY -- 1.5.1 SOUND SPEED PROFILES -- 1.5.2 THERMOCLINES -- 1.5.3 ARCTIC REGIONS -- 1.5.4 DEEP ISOTHERMAL LAYERS -- 1.5.5 EXPRESSIONS FOR THE SPEED OF SOUND -- 1.5.6 SURFACE WAVES -- 1.5.7 INTERNAL WAVES -- 1.5.8 BUBBLES FROM WAVE BREAKING -- 1.5.9 OCEAN ACIDIFICATION -- 1.5.10 DEEP-OCEAN HYDROTHERMAL FLOWS -- 1.5.11 EDDIES, FRONTS, AND LARGE-SCALE TURBULENCE -- 1.5.12 DIURNAL AND SEASONAL CHANGES -- 1.6 SONAR EQUATIONS -- 1.6.1 DEFINITIONS OF THE SONAR EQUATION TERMS -- 1.6.2 SONAR EQUATIONS -- 1.7 ABBREVIATIONS -- Acknowledgment -- REFERENCES -- 2 - Sound Propagation -- 2.1 THE CONCEPT OF WAVES -- 2.1.1 THE WAVE EQUATION FOR AN INVISCID FLUID -- 2.1.2 THE HELMHOLTZ EQUATION -- 2.1.3 HARMONIC WAVES -- 2.1.4 PLANE WAVES -- 2.1.5 CYLINDRICAL WAVES -- 2.1.6 SPHERICAL WAVES -- 2.1.7 PLANE WAVE DECOMPOSITION OF A SPHERICAL WAVE -- 2.2 SOUND PROPAGATION IN A VISCOUS FLUID -- 2.2.1 DISPERSION FORMULAS -- 2.2.2 KRAMERS-KRONIG DISPERSION RELATIONS -- 2.2.3 CAUSALITY AND STOKES' EQUATION -- 2.2.4 PULSE PROPAGATION IN A VISCOUS FLUID -- 2.3 SOUND WAVES AND SHEAR WAVES IN MARINE SEDIMENTS -- 2.3.1 THE BIOT THEORY -- 2.3.2 THE GRAIN-SHEARING THEORY -- 2.4 SOURCE OR RECEIVER IN MOTION -- 2.4.1 DOPPLER FREQUENCY SHIFTS (SOURCE STATIONARY, OBSERVER IN MOTION). , 2.4.2 DOPPLER FREQUENCY SHIFTS (OBSERVER STATIONARY, SOURCE IN MOTION) -- 2.4.3 ACOUSTIC FIELD FROM A MOVING SOURCE -- 2.5 SOUND REFLECTION AND TRANSMISSION AT A FLUID-FLUID BOUNDARY -- 2.5.1 STRUCTURE OF THE SOLUTION -- 2.5.2 THE STATIONARY PHASE APPROXIMATION -- 2.5.3 PLANE-WAVE REFLECTION -- 2.5.4 WESTON'S EFFECTIVE DEPTH -- 2.5.5 PLANE-WAVE REFRACTION -- 2.5.6 THE LATERAL WAVE -- 2.6 THE "IDEAL" WAVEGUIDE -- 2.6.1 PLANE WAVES AND NORMAL MODES -- 2.6.2 THE ACOUSTIC FIELD IN THE IDEAL WAVEGUIDE -- 2.6.3 INTERMODAL INTERFERENCE -- 2.7 THE PEKERIS CHANNEL -- 2.7.1 THE INTEGRAL-TRANSFORM SOLUTION FOR THE FIELD -- 2.7.2 THE NORMAL MODE SOLUTION -- 2.7.3 THE CHARACTERISTIC EQUATION -- 2.8 THREE-DIMENSIONAL PROPAGATION -- 2.8.1 HORIZONTAL REFRACTION -- 2.8.2 THE "IDEAL" WEDGE -- 2.8.3 THE SHADOW EDGE -- 2.8.4 INTRAMODAL INTERFERENCE -- 2.8.5 THE PENETRABLE WEDGE -- Acknowledgment -- REFERENCES -- 3 - Sound Propagation Modeling -- 3.1 RAY MODELS -- 3.1.1 A PARTICULAR TYPE OF ANALYTIC 2-D RAY TRACING -- 3.1.1.1 Kinematic Ray Tracing -- 3.1.1.2 Dynamic Ray Tracing -- 3.1.1.3 Caustics -- 3.1.1.4 Coherent Computation of Propagation Loss and Propagation Time Series -- 3.1.2 EXAMPLE -- 3.2 WAVE NUMBER INTEGRATION OR SPECTRAL METHODS -- 3.2.1 SOLUTION OF THE DEPTH-DEPENDENT ODE SYSTEMS -- 3.2.1.1 Recursive Computation of Reflection-Coefficient Matrices for the Solid Bottom -- 3.2.1.2 Propagator Matrices for the Fluid Region -- 3.2.1.3 Alternative Treatment of the Fluid Region -- 3.2.1.4 Final Remarks -- 3.2.2 ADAPTIVE INTEGRATION -- 3.2.3 EXAMPLE -- 3.3 NORMAL MODE PROPAGATION MODELS -- 3.3.1 MODAL WAVE NUMBERS -- 3.3.2 MODE FUNCTIONS -- 3.3.3 EXCITATION COEFFICIENTS -- 3.3.4 RANGE-DEPENDENT MEDIA -- 3.3.4.1 Equations Relating the Modal Expansion Coefficients -- 3.3.4.2 Solution in Terms of Reflection-Coefficient Matrices -- 3.3.4.3 Final Remarks. , 3.3.5 EXAMPLES -- 3.3.5.1 Range-Invariant Media -- 3.3.5.2 Range-Dependent Media -- 3.4 PARABOLIC EQUATION METHODS -- 3.4.1 INTERFACE CONDITIONS AT THE VERTICAL RANGE-SEGMENT INTERFACES -- 3.4.2 NUMERICAL SOLUTION METHODS -- 3.4.2.1 Start Solution -- 3.4.2.2 Rational-Function Approximations for the Relevant Operators -- 3.4.2.3 Depth Discretization and Range Integration -- 3.4.3 EXTENDED AND ALTERNATIVE PE APPROACHES -- 3.4.3.1 Extension to Media That Vary Regionwise Smoothly With Range and Depth -- 3.4.3.2 Coordinate Transformation Techniques -- 3.4.3.3 Two-Way PE Approaches -- 3.4.3.4 Extension to Fluid-Solid Media -- 3.4.4 EXAMPLES -- 3.5 FINITE-DIFFERENCE AND FINITE-ELEMENT METHODS -- 3.5.1 ONE-DIMENSIONAL FEM AND FDM FOR PARABOLIC AND NORMAL-MODE EQUATIONS -- 3.5.1.1 Application to Normal Modes -- 3.5.2 TWO-DIMENSIONAL FEM AND FDM FOR THE HELMHOLTZ EQUATION -- 3.5.2.1 FEM Discretization -- 3.5.2.2 FDM Discretization -- 3.5.2.3 Methods to Solve the Linear Equation System and Possibilities to Reduce Its Size -- 3.5.3 TIME-DOMAIN MODELING -- 3.5.3.1 FEM Discretization -- 3.5.3.2 FDM Discretization -- 3.5.3.3 Numerical Dispersion, Time Integration, and Stability -- 3.5.3.4 Including Absorption -- 3.5.3.5 Some Recent Developments -- 3.5.4 EXAMPLES -- 3.6 3-D SOUND PROPAGATION MODELS -- 3.6.1 MODELING HORIZONTAL REFRACTION BY A SLOPING BOTTOM OR CHANGING SOUND-SPEED PROFILE -- 3.6.1.1 Fourier Transformation With Respect to the y-Coordinate -- 3.6.1.2 Equations Relating the Modal Expansion Coefficients -- 3.6.1.3 Solution in Terms of Reflection-Coefficient Matrices -- 3.6.1.4 Final Remarks -- 3.6.2 MODELING DIFFRACTION AROUND A CYLINDRICALLY SYMMETRIC ANOMALY -- 3.6.2.1 Fourier Series With Respect to the φ Coordinate -- 3.6.2.2 Equations Relating the Modal Expansion Coefficients -- 3.6.2.3 Solution in Terms of Reflection-Coefficient Matrices. , 3.6.2.4 Final Remarks -- 3.6.3 EXAMPLES -- LIST OF ABBREVIATIONS AND SYMBOLS -- Acknowledgments -- REFERENCES -- 4 - Absorption of Sound in Seawater -- 4.1 PHYSICS AND PHENOMENA -- 4.2 EXPERIMENTAL DATA -- 4.2.1 ABSORPTION PRESSURE DEPENDENCE -- 4.2.2 ABSORPTION TEMPERATURE DEPENDENCE -- 4.2.3 PH DEPENDENCE OF ABSORPTION -- 4.2.4 SALINITY DEPENDENCE -- 4.3 SOUND ABSORPTION MECHANISMS -- 4.3.1 SOUND ABSORPTION IN FRESHWATER -- 4.3.2 MOLECULAR CHEMICAL RELAXATION PROCESSES -- 4.3.2.1 Temperature Dependence -- 4.3.2.2 Pressure Effects -- 4.4 FORMULAS AND EXPRESSIONS -- 4.4.1 FRANCOIS AND GARRISON EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.4.1.1 Boric Acid Coefficients -- 4.4.1.2 Magnesium Sulfate Coefficients -- 4.4.1.3 Pure Water Contribution -- 4.4.2 AINSLIE AND MCCOLM SIMPLIFIED EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.5 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 5 - Scattering of Sound -- 5.1 PHYSICS AND PHENOMENA -- 5.2 SCATTERING FROM POINT-LIKE OBJECTS -- 5.2.1 SINGLE OBJECTS -- 5.2.1.1 Rigid and Elastic Spheres -- 5.2.1.2 Gas Bubbles -- 5.2.1.3 Single Fish -- 5.2.1.4 Canonically Shaped Objects -- 5.2.1.5 Submarines -- 5.2.2 MULTIPLE OBJECTS -- 5.2.2.1 Fish Schools -- 5.2.2.2 Bubble Clouds -- 5.2.2.3 Deep Scattering Layer -- 5.2.2.4 Suspended Sediments -- 5.3 SCATTERING FROM EXTENDED, NEARLY PLANE, ROUGH SURFACES -- 5.3.1 BRAGG SCATTERING -- 5.3.2 REFLECTION FROM FACETS -- 5.3.3 LAMBERT'S LAW -- 5.3.4 SCATTERING FROM THE SEA SURFACE -- 5.3.5 SCATTERING FROM THE SEABED -- 5.4 THEORETICAL BASIS FOR SCATTERING CALCULATIONS -- 5.4.1 THE PERTURBATION APPROXIMATION -- 5.4.2 THE HELMHOLTZ-KIRCHHOFF METHOD -- 5.4.3 SCATTERING FROM SURFACES WITH TWO SCALES OF ROUGHNESS -- 5.5 SCATTERING FROM CURVED, ROUGH SURFACES -- 5.6 REVERBERATION -- 5.7 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 6 - Ambient Noise -- 6.1 PHYSICS AND PHENOMENA. , 6.2 SOURCES OF AMBIENT NOISE -- 6.2.1 TIDES AND HYDROSTATIC EFFECTS OF WAVES -- 6.2.2 SEISMIC ACTIVITIES -- 6.2.3 TURBULENCE -- 6.2.4 SURFACE PHENOMENA -- 6.2.4.1 Breaking Waves -- 6.2.4.2 Nonlinear Wave-Wave Interaction -- 6.2.4.3 Bubbles -- 6.2.5 PRECIPITATION -- 6.2.6 BIOLOGICAL ACTIVITY -- 6.2.7 ICE NOISE -- 6.2.8 SHIPPING -- 6.2.9 OTHER MAN-MADE (ANTHROPOGENIC) SOURCES -- 6.2.10 SEDIMENT FLOW-GENERATED NOISE -- 6.2.11 THERMAL NOISE -- 6.3 SPECTRA OF AMBIENT NOISE -- 6.3.1 DEEP-WATER SPECTRA -- 6.3.2 SHALLOW-WATER SPECTRA -- 6.4 DIRECTIVITY OF AMBIENT NOISE -- 6.4.1 NOISE PROPAGATION -- 6.5 COHERENCE OF AMBIENT NOISE -- 6.6 SELF-NOISE -- 6.7 AMPLITUDE DISTRIBUTIONS FOR UNDERWATER NOISE -- 6.8 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 7 - Shallow-Water Acoustics -- 7.1 WHAT IS SHALLOW-WATER ACOUSTICS? -- 7.1.1 MILITARY APPLICATIONS -- 7.1.2 DUAL-USE APPLICATIONS -- 7.1.3 OCEAN SCIENCES APPLICATIONS -- 7.1.4 COMMERCIAL APPLICATIONS -- 7.2 PHYSICS AND PHENOMENA -- 7.2.1 SOURCE LEVEL TERM -- 7.2.1.1 Example: Integrating Pseudorandom Noise Sequences and Frequency Modulation Sweeps for Signal Gain -- 7.2.2 ARRAY GAIN TERM -- 7.2.2.1 Examples: Mode Filtration Techniques in Shallow Water -- 7.2.2.1.1 Time Resolution of Modes -- 7.2.2.1.2 Amplitude-Shaded Vertical Array Mode Resolution -- 7.2.2.1.3 Vertical Array Steering -- 7.2.2.1.4 Horizontal Array Steering -- 7.2.2.1.5 Focused Array Mode Filtration -- 7.2.3 TRANSMISSION LOSS TERM -- 7.2.3.1 Simple Geometric Spreading Intensity Arguments -- 7.2.3.2 Popular Propagation Theories and Their Application(s) to Shallow Water -- 7.2.3.2.1 Ray Theory -- 7.2.3.2.2 Normal Modes and Shallow Water -- 7.2.3.2.3 Vertical Modes and Horizontal Rays -- 7.2.3.2.3.1 Example: Ducting Between Nonlinear Internal Waves -- 7.2.3.2.4 Parabolic Equation -- 7.2.3.2.5 Wave Number Integration -- 7.2.4 AMBIENT NOISE TERM. , 7.2.5 REVERBERATION TERM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949697618402882
    Format: 1 online resource (982 pages) : , illustrations
    ISBN: 0-12-811247-6 , 0-12-811240-9
    Content: Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. Provides a complete and up-to-date treatment of all major subjects of underwater acoustics Presents chapters written by recognized experts in their individual field Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics Includes a comprehensive list of literature references for each chapter.
    Note: Front Cover -- Applied Underwater Acoustics -- Applied Underwater Acoustics -- Copyright -- Dedication -- Contents -- List of Contributors -- Preface -- 1 - General Characteristics of the Underwater Environment -- 1.1 INTRODUCTION -- 1.2 A BRIEF EXPOSITION OF THE HISTORY OF UNDERWATER ACOUSTICS -- 1.2.1 UNDERWATER ACOUSTICS BEFORE 1912 -- 1.2.2 THE YEARS 1912 THROUGH 1918 -- 1.2.3 THE YEARS 1919 THROUGH 1939 -- 1.2.4 THE YEARS 1940 THROUGH 1946 -- 1.2.5 THE YEARS AFTER 1946 -- 1.3 INTERNATIONAL STANDARD UNITS -- 1.4 THE DECIBEL SCALES -- 1.5 FEATURES OF OCEANOGRAPHY -- 1.5.1 SOUND SPEED PROFILES -- 1.5.2 THERMOCLINES -- 1.5.3 ARCTIC REGIONS -- 1.5.4 DEEP ISOTHERMAL LAYERS -- 1.5.5 EXPRESSIONS FOR THE SPEED OF SOUND -- 1.5.6 SURFACE WAVES -- 1.5.7 INTERNAL WAVES -- 1.5.8 BUBBLES FROM WAVE BREAKING -- 1.5.9 OCEAN ACIDIFICATION -- 1.5.10 DEEP-OCEAN HYDROTHERMAL FLOWS -- 1.5.11 EDDIES, FRONTS, AND LARGE-SCALE TURBULENCE -- 1.5.12 DIURNAL AND SEASONAL CHANGES -- 1.6 SONAR EQUATIONS -- 1.6.1 DEFINITIONS OF THE SONAR EQUATION TERMS -- 1.6.2 SONAR EQUATIONS -- 1.7 ABBREVIATIONS -- Acknowledgment -- REFERENCES -- 2 - Sound Propagation -- 2.1 THE CONCEPT OF WAVES -- 2.1.1 THE WAVE EQUATION FOR AN INVISCID FLUID -- 2.1.2 THE HELMHOLTZ EQUATION -- 2.1.3 HARMONIC WAVES -- 2.1.4 PLANE WAVES -- 2.1.5 CYLINDRICAL WAVES -- 2.1.6 SPHERICAL WAVES -- 2.1.7 PLANE WAVE DECOMPOSITION OF A SPHERICAL WAVE -- 2.2 SOUND PROPAGATION IN A VISCOUS FLUID -- 2.2.1 DISPERSION FORMULAS -- 2.2.2 KRAMERS-KRONIG DISPERSION RELATIONS -- 2.2.3 CAUSALITY AND STOKES' EQUATION -- 2.2.4 PULSE PROPAGATION IN A VISCOUS FLUID -- 2.3 SOUND WAVES AND SHEAR WAVES IN MARINE SEDIMENTS -- 2.3.1 THE BIOT THEORY -- 2.3.2 THE GRAIN-SHEARING THEORY -- 2.4 SOURCE OR RECEIVER IN MOTION -- 2.4.1 DOPPLER FREQUENCY SHIFTS (SOURCE STATIONARY, OBSERVER IN MOTION). , 2.4.2 DOPPLER FREQUENCY SHIFTS (OBSERVER STATIONARY, SOURCE IN MOTION) -- 2.4.3 ACOUSTIC FIELD FROM A MOVING SOURCE -- 2.5 SOUND REFLECTION AND TRANSMISSION AT A FLUID-FLUID BOUNDARY -- 2.5.1 STRUCTURE OF THE SOLUTION -- 2.5.2 THE STATIONARY PHASE APPROXIMATION -- 2.5.3 PLANE-WAVE REFLECTION -- 2.5.4 WESTON'S EFFECTIVE DEPTH -- 2.5.5 PLANE-WAVE REFRACTION -- 2.5.6 THE LATERAL WAVE -- 2.6 THE "IDEAL" WAVEGUIDE -- 2.6.1 PLANE WAVES AND NORMAL MODES -- 2.6.2 THE ACOUSTIC FIELD IN THE IDEAL WAVEGUIDE -- 2.6.3 INTERMODAL INTERFERENCE -- 2.7 THE PEKERIS CHANNEL -- 2.7.1 THE INTEGRAL-TRANSFORM SOLUTION FOR THE FIELD -- 2.7.2 THE NORMAL MODE SOLUTION -- 2.7.3 THE CHARACTERISTIC EQUATION -- 2.8 THREE-DIMENSIONAL PROPAGATION -- 2.8.1 HORIZONTAL REFRACTION -- 2.8.2 THE "IDEAL" WEDGE -- 2.8.3 THE SHADOW EDGE -- 2.8.4 INTRAMODAL INTERFERENCE -- 2.8.5 THE PENETRABLE WEDGE -- Acknowledgment -- REFERENCES -- 3 - Sound Propagation Modeling -- 3.1 RAY MODELS -- 3.1.1 A PARTICULAR TYPE OF ANALYTIC 2-D RAY TRACING -- 3.1.1.1 Kinematic Ray Tracing -- 3.1.1.2 Dynamic Ray Tracing -- 3.1.1.3 Caustics -- 3.1.1.4 Coherent Computation of Propagation Loss and Propagation Time Series -- 3.1.2 EXAMPLE -- 3.2 WAVE NUMBER INTEGRATION OR SPECTRAL METHODS -- 3.2.1 SOLUTION OF THE DEPTH-DEPENDENT ODE SYSTEMS -- 3.2.1.1 Recursive Computation of Reflection-Coefficient Matrices for the Solid Bottom -- 3.2.1.2 Propagator Matrices for the Fluid Region -- 3.2.1.3 Alternative Treatment of the Fluid Region -- 3.2.1.4 Final Remarks -- 3.2.2 ADAPTIVE INTEGRATION -- 3.2.3 EXAMPLE -- 3.3 NORMAL MODE PROPAGATION MODELS -- 3.3.1 MODAL WAVE NUMBERS -- 3.3.2 MODE FUNCTIONS -- 3.3.3 EXCITATION COEFFICIENTS -- 3.3.4 RANGE-DEPENDENT MEDIA -- 3.3.4.1 Equations Relating the Modal Expansion Coefficients -- 3.3.4.2 Solution in Terms of Reflection-Coefficient Matrices -- 3.3.4.3 Final Remarks. , 3.3.5 EXAMPLES -- 3.3.5.1 Range-Invariant Media -- 3.3.5.2 Range-Dependent Media -- 3.4 PARABOLIC EQUATION METHODS -- 3.4.1 INTERFACE CONDITIONS AT THE VERTICAL RANGE-SEGMENT INTERFACES -- 3.4.2 NUMERICAL SOLUTION METHODS -- 3.4.2.1 Start Solution -- 3.4.2.2 Rational-Function Approximations for the Relevant Operators -- 3.4.2.3 Depth Discretization and Range Integration -- 3.4.3 EXTENDED AND ALTERNATIVE PE APPROACHES -- 3.4.3.1 Extension to Media That Vary Regionwise Smoothly With Range and Depth -- 3.4.3.2 Coordinate Transformation Techniques -- 3.4.3.3 Two-Way PE Approaches -- 3.4.3.4 Extension to Fluid-Solid Media -- 3.4.4 EXAMPLES -- 3.5 FINITE-DIFFERENCE AND FINITE-ELEMENT METHODS -- 3.5.1 ONE-DIMENSIONAL FEM AND FDM FOR PARABOLIC AND NORMAL-MODE EQUATIONS -- 3.5.1.1 Application to Normal Modes -- 3.5.2 TWO-DIMENSIONAL FEM AND FDM FOR THE HELMHOLTZ EQUATION -- 3.5.2.1 FEM Discretization -- 3.5.2.2 FDM Discretization -- 3.5.2.3 Methods to Solve the Linear Equation System and Possibilities to Reduce Its Size -- 3.5.3 TIME-DOMAIN MODELING -- 3.5.3.1 FEM Discretization -- 3.5.3.2 FDM Discretization -- 3.5.3.3 Numerical Dispersion, Time Integration, and Stability -- 3.5.3.4 Including Absorption -- 3.5.3.5 Some Recent Developments -- 3.5.4 EXAMPLES -- 3.6 3-D SOUND PROPAGATION MODELS -- 3.6.1 MODELING HORIZONTAL REFRACTION BY A SLOPING BOTTOM OR CHANGING SOUND-SPEED PROFILE -- 3.6.1.1 Fourier Transformation With Respect to the y-Coordinate -- 3.6.1.2 Equations Relating the Modal Expansion Coefficients -- 3.6.1.3 Solution in Terms of Reflection-Coefficient Matrices -- 3.6.1.4 Final Remarks -- 3.6.2 MODELING DIFFRACTION AROUND A CYLINDRICALLY SYMMETRIC ANOMALY -- 3.6.2.1 Fourier Series With Respect to the φ Coordinate -- 3.6.2.2 Equations Relating the Modal Expansion Coefficients -- 3.6.2.3 Solution in Terms of Reflection-Coefficient Matrices. , 3.6.2.4 Final Remarks -- 3.6.3 EXAMPLES -- LIST OF ABBREVIATIONS AND SYMBOLS -- Acknowledgments -- REFERENCES -- 4 - Absorption of Sound in Seawater -- 4.1 PHYSICS AND PHENOMENA -- 4.2 EXPERIMENTAL DATA -- 4.2.1 ABSORPTION PRESSURE DEPENDENCE -- 4.2.2 ABSORPTION TEMPERATURE DEPENDENCE -- 4.2.3 PH DEPENDENCE OF ABSORPTION -- 4.2.4 SALINITY DEPENDENCE -- 4.3 SOUND ABSORPTION MECHANISMS -- 4.3.1 SOUND ABSORPTION IN FRESHWATER -- 4.3.2 MOLECULAR CHEMICAL RELAXATION PROCESSES -- 4.3.2.1 Temperature Dependence -- 4.3.2.2 Pressure Effects -- 4.4 FORMULAS AND EXPRESSIONS -- 4.4.1 FRANCOIS AND GARRISON EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.4.1.1 Boric Acid Coefficients -- 4.4.1.2 Magnesium Sulfate Coefficients -- 4.4.1.3 Pure Water Contribution -- 4.4.2 AINSLIE AND MCCOLM SIMPLIFIED EQUATION FOR SOUND ABSORPTION IN SEAWATER -- 4.5 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 5 - Scattering of Sound -- 5.1 PHYSICS AND PHENOMENA -- 5.2 SCATTERING FROM POINT-LIKE OBJECTS -- 5.2.1 SINGLE OBJECTS -- 5.2.1.1 Rigid and Elastic Spheres -- 5.2.1.2 Gas Bubbles -- 5.2.1.3 Single Fish -- 5.2.1.4 Canonically Shaped Objects -- 5.2.1.5 Submarines -- 5.2.2 MULTIPLE OBJECTS -- 5.2.2.1 Fish Schools -- 5.2.2.2 Bubble Clouds -- 5.2.2.3 Deep Scattering Layer -- 5.2.2.4 Suspended Sediments -- 5.3 SCATTERING FROM EXTENDED, NEARLY PLANE, ROUGH SURFACES -- 5.3.1 BRAGG SCATTERING -- 5.3.2 REFLECTION FROM FACETS -- 5.3.3 LAMBERT'S LAW -- 5.3.4 SCATTERING FROM THE SEA SURFACE -- 5.3.5 SCATTERING FROM THE SEABED -- 5.4 THEORETICAL BASIS FOR SCATTERING CALCULATIONS -- 5.4.1 THE PERTURBATION APPROXIMATION -- 5.4.2 THE HELMHOLTZ-KIRCHHOFF METHOD -- 5.4.3 SCATTERING FROM SURFACES WITH TWO SCALES OF ROUGHNESS -- 5.5 SCATTERING FROM CURVED, ROUGH SURFACES -- 5.6 REVERBERATION -- 5.7 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 6 - Ambient Noise -- 6.1 PHYSICS AND PHENOMENA. , 6.2 SOURCES OF AMBIENT NOISE -- 6.2.1 TIDES AND HYDROSTATIC EFFECTS OF WAVES -- 6.2.2 SEISMIC ACTIVITIES -- 6.2.3 TURBULENCE -- 6.2.4 SURFACE PHENOMENA -- 6.2.4.1 Breaking Waves -- 6.2.4.2 Nonlinear Wave-Wave Interaction -- 6.2.4.3 Bubbles -- 6.2.5 PRECIPITATION -- 6.2.6 BIOLOGICAL ACTIVITY -- 6.2.7 ICE NOISE -- 6.2.8 SHIPPING -- 6.2.9 OTHER MAN-MADE (ANTHROPOGENIC) SOURCES -- 6.2.10 SEDIMENT FLOW-GENERATED NOISE -- 6.2.11 THERMAL NOISE -- 6.3 SPECTRA OF AMBIENT NOISE -- 6.3.1 DEEP-WATER SPECTRA -- 6.3.2 SHALLOW-WATER SPECTRA -- 6.4 DIRECTIVITY OF AMBIENT NOISE -- 6.4.1 NOISE PROPAGATION -- 6.5 COHERENCE OF AMBIENT NOISE -- 6.6 SELF-NOISE -- 6.7 AMPLITUDE DISTRIBUTIONS FOR UNDERWATER NOISE -- 6.8 SYMBOLS AND ABBREVIATIONS -- REFERENCES -- 7 - Shallow-Water Acoustics -- 7.1 WHAT IS SHALLOW-WATER ACOUSTICS? -- 7.1.1 MILITARY APPLICATIONS -- 7.1.2 DUAL-USE APPLICATIONS -- 7.1.3 OCEAN SCIENCES APPLICATIONS -- 7.1.4 COMMERCIAL APPLICATIONS -- 7.2 PHYSICS AND PHENOMENA -- 7.2.1 SOURCE LEVEL TERM -- 7.2.1.1 Example: Integrating Pseudorandom Noise Sequences and Frequency Modulation Sweeps for Signal Gain -- 7.2.2 ARRAY GAIN TERM -- 7.2.2.1 Examples: Mode Filtration Techniques in Shallow Water -- 7.2.2.1.1 Time Resolution of Modes -- 7.2.2.1.2 Amplitude-Shaded Vertical Array Mode Resolution -- 7.2.2.1.3 Vertical Array Steering -- 7.2.2.1.4 Horizontal Array Steering -- 7.2.2.1.5 Focused Array Mode Filtration -- 7.2.3 TRANSMISSION LOSS TERM -- 7.2.3.1 Simple Geometric Spreading Intensity Arguments -- 7.2.3.2 Popular Propagation Theories and Their Application(s) to Shallow Water -- 7.2.3.2.1 Ray Theory -- 7.2.3.2.2 Normal Modes and Shallow Water -- 7.2.3.2.3 Vertical Modes and Horizontal Rays -- 7.2.3.2.3.1 Example: Ducting Between Nonlinear Internal Waves -- 7.2.3.2.4 Parabolic Equation -- 7.2.3.2.5 Wave Number Integration -- 7.2.4 AMBIENT NOISE TERM. , 7.2.5 REVERBERATION TERM.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, Netherlands : Elsevier
    UID:
    b3kat_BV045382235
    Format: 1 Online-Ressource (xv, 964 Seiten) , Illustrationen, Diagramme
    ISBN: 9780128112472 , 0128112476
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9780128112403
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Hydroakustik
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages