feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2024  (3)
  • Bannehr, Lutz  (3)
  • Frei verfügbar (Open Access)  (3)
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Jahr
Zugriff
  • Frei verfügbar (Open Access)  (3)
  • 1
    UID:
    edochu_18452_25777
    Umfang: 1 Online-Ressource (61 Seiten)
    Inhalt: The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring.
    Inhalt: Peer Reviewed
    In: Basel : MDPI, 12,22
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edochu_18452_27133
    Umfang: 1 Online-Ressource (48 Seiten)
    Inhalt: Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed.
    Inhalt: Peer Reviewed
    In: Basel : MDPI, 14,9
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edochu_18452_29872
    Umfang: 1 Online-Ressource (47 Seiten)
    Inhalt: Changes and disturbances to water diversity and quality are complex and multi-scale in space and time. Although in situ methods provide detailed point information on the condition of water bodies, they are of limited use for making area-based monitoring over time, as aquatic ecosystems are extremely dynamic. Remote sensing (RS) provides methods and data for the cost-effective, comprehensive, continuous and standardised monitoring of characteristics and changes in characteristics of water diversity and water quality from local and regional scales to the scale of entire continents. In order to apply and better understand RS techniques and their derived spectral indicators in monitoring water diversity and quality, this study defines five characteristics of water diversity and quality that can be monitored using RS. These are the diversity of water traits, the diversity of water genesis, the structural diversity of water, the taxonomic diversity of water and the functional diversity of water. It is essential to record the diversity of water traits to derive the other four characteristics of water diversity from RS. Furthermore, traits are the only and most important interface between in situ and RS monitoring approaches. The monitoring of these five characteristics of water diversity and water quality using RS technologies is presented in detail and discussed using numerous examples. Finally, current and future developments are presented to advance monitoring using RS and the trait approach in modelling, prediction and assessment as a basis for successful monitoring and management strategies.
    Inhalt: Peer Reviewed
    In: Basel : MDPI, 16,13
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz