Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cold Spring Harbor Laboratory  (5)
  • Biodiversity Research  (5)
Type of Medium
Publisher
  • Cold Spring Harbor Laboratory  (5)
Language
Years
FID
  • Biodiversity Research  (5)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2007
    In:  Genes & Development Vol. 21, No. 21 ( 2007-11-01), p. 2804-2817
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 21, No. 21 ( 2007-11-01), p. 2804-2817
    Abstract: The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases ( oppA , dppA ), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions −57 to −45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2007
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2013
    In:  Genes & Development Vol. 27, No. 5 ( 2013-03-01), p. 552-564
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 27, No. 5 ( 2013-03-01), p. 552-564
    Abstract: Bacterial small RNAs (sRNAs) are well established to regulate diverse cellular processes, but how they themselves are regulated is less understood. Recently, we identified a regulatory circuit wherein the GlmY and GlmZ sRNAs of Escherichia coli act hierarchically to activate mRNA glmS , which encodes glucosamine-6-phosphate (GlcN6P) synthase. Although the two sRNAs are highly similar, only GlmZ is a direct activator that base-pairs with the glmS mRNA, aided by protein Hfq. GlmY, however, does not bind Hfq and activates glmS indirectly by protecting GlmZ from RNA cleavage. This complex regulation feedback controls the levels of GlmS protein in response to its product, GlcN6P, a key metabolite in cell wall biosynthesis. Here, we reveal the molecular basis for the regulated turnover of GlmZ, identifying RapZ (RNase adaptor protein for sRNA GlmZ; formerly YhbJ) as a novel type of RNA-binding protein that recruits the major endoribonuclease RNase E to GlmZ. This involves direct interaction of RapZ with the catalytic domain of RNase E. GlmY binds RapZ through a secondary structure shared by both sRNAs and therefore acts by molecular mimicry as a specific decoy for RapZ. Thus, in analogy to regulated proteolysis, RapZ is an adaptor, and GlmY is an anti-adaptor in regulated turnover of a regulatory small RNA.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2013
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2005
    In:  Genes & Development Vol. 19, No. 19 ( 2005-10-01), p. 2355-2366
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 19, No. 19 ( 2005-10-01), p. 2355-2366
    Abstract: This paper shows that the small RNA MicA (previously SraD) is an antisense regulator of ompA in Escherichia coli . MicA accumulates upon entry into stationary phase and down-regulates the level of ompA mRNA. Regulation of ompA (outer membrane protein A), previously attributed to Hfq/mRNA binding, is lost upon deletion of the micA gene, whereas overexpression of MicA inhibits the synthesis of OmpA. In vitro, MicA binds to the ompA mRNA leader. Enzymatic and chemical probing was used to map the structures of MicA, the ompA mRNA leader, and the complex formed upon binding. MicA binding generates a footprint across the ompA Shine-Dalgarno sequence, consistent with a 12 + 4 base-pair interaction, which is additionally supported by the effect of mutations in vivo and by bioinformatics analysis of enterobacterial micA/ompA homolog sequences. MicA is conserved in many enterobacteria, as is its ompA target site. In vitro toeprinting confirmed that binding of MicA specifically interferes with ribosome binding. We propose that MicA, when present at high levels, blocks ribosome binding at the ompA translation start site, which—in line with previous work—secondarily facilitates RNase E cleavage and subsequent mRNA decay. MicA requires the presence of the Hfq protein, although the mechanistic basis for this remains unclear.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2005
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2013
    In:  Genes & Development Vol. 27, No. 10 ( 2013-05-15), p. 1073-1078
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 27, No. 10 ( 2013-05-15), p. 1073-1078
    Abstract: The abundant RNA-binding proteins CsrA and Hfq each impact bacterial physiology by working in conjunction with small RNAs to control large post-transcriptional regulons. The small RNAs involved were considered mechanistically distinct, regulating mRNAs either directly through Hfq-mediated base-pairing or indirectly by sequestering the global translational repressor CsrA. In this issue of Genes & Development , Jørgensen and colleagues (pp. 1132–1145) blur these distinctions with a dual-mechanism small RNA that acts through both Hfq and CsrA to regulate the formation of bacterial biofilms.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2013
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2008
    In:  Genes & Development Vol. 22, No. 21 ( 2008-11-01), p. 2914-2925
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 22, No. 21 ( 2008-11-01), p. 2914-2925
    Abstract: Noncoding RNA regulators have been implicated in almost all imaginable cellular processes. Here we review how regulatory small RNAs such as Spot42, SgrS, GlmY, and GlmZ and a cis -encoded ribozyme in glmS mRNA control sugar metabolism. Besides discussing the physiological implications, we show how the study of these molecules contributed to our understanding of the mechanisms and of general principles of RNA-based regulation. These include the post-transcriptional repression or activation of gene expression within polycistronic mRNAs; novel ribonucleoprotein complexes composed of small RNA, Hfq, and/or RNase E; and the hierarchical action of regulatory RNAs.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2008
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages