Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 7 ( 2002-04-02), p. 4424-4429
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 7 ( 2002-04-02), p. 4424-4429
    Abstract: We demonstrate that the nuclear topological arrangement of chromosome territories (CTs) has been conserved during primate evolution over a period of about 30 million years. Recent evidence shows that the positioning of chromatin in human lymphocyte nuclei is correlated with gene density. For example, human chromosome 19 territories, which contain mainly gene-dense and early replicating chromatin, are located toward the nuclear center, whereas chromosome 18 territories, which consist mainly of gene-poor and later replicating chromatin, is located close to the nuclear border. In this study, we subjected seven different primate species to comparative analysis of the radial distribution pattern of human chromosome 18- and 19-homologous chromatin by three-dimensional fluorescence in situ hybridization. Our data demonstrate that gene-density-correlated radial chromatin arrangements were conserved during higher-primate genome evolution, irrespective of the major karyotypic rearrangements that occurred in different phylogenetic lineages. The evolutionarily conserved positioning of homologous chromosomes or chromosome segments in related species supports evidence for a functionally relevant higher-order chromatin arrangement that is correlated with gene-density.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 45 ( 2010-11-09), p. 19426-19431
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 45 ( 2010-11-09), p. 19426-19431
    Abstract: Thymic central tolerance comprehensively imprints the T-cell receptor repertoire before T cells seed the periphery. Medullary thymic epithelial cells (mTECs) play a pivotal role in this process by virtue of promiscuous expression of tissue-restricted autoantigens. The molecular regulation of this unusual gene expression, in particular the involvement of epigenetic mechanisms is only poorly understood. By studying promiscuous expression of the mouse casein locus, we report that transcription of this locus proceeds from a delimited region (“entry site”) to increasingly complex patterns along with mTEC maturation. Transcription of this region is preceded by promoter demethylation in immature mTECs followed upon mTEC maturation by acquisition of active histone marks and local locus decontraction. Moreover, analysis of two additional gene loci showed that promiscuous expression is transient in single mTECs. Transient gene expression could conceivably add to the local diversity of self-antigen display thus enhancing the efficacy of central tolerance.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 47 ( 2015-11-24), p. 14635-14640
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 47 ( 2015-11-24), p. 14635-14640
    Abstract: During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)] . Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages