Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (4)
  • Cremer, Paul S.  (4)
Type of Medium
Publisher
  • Proceedings of the National Academy of Sciences  (4)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 9 ( 2003-04-29), p. 5449-5454
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 9 ( 2003-04-29), p. 5449-5454
    Abstract: We have developed a microfluidic assay for bacterial chemotaxis in which a gradient of chemoeffectors is established inside a microchannel via diffusion between parallel streams of liquid in laminar flow. The random motility and chemotactic responses to l -aspartate, l -serine, l -leucine, and Ni 2+ of WT and chemotactic-mutant strains of Escherichia coli were measured. Migration of the cells was quantified by counting the cells accumulating in each of 22 outlet ports. The sensitivity of the assay is attested to by the significant response of WT cells to 3.2 nM l -aspartate, a concentration three orders of magnitude lower than the detection limit in the standard capillary assay. The response to repellents was as robust and easily recorded as the attractant response. A surprising discovery was that l -leucine is sensed by Tar as an attractant at low concentrations and by Tsr as a repellent at higher concentrations. This assay offers superior performance and convenience relative to the existing assays to measure bacterial tactic responses, and it is flexible enough to be used in a wide range of different applications.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 10 ( 2017-03-07), p. 2479-2484
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 10 ( 2017-03-07), p. 2479-2484
    Abstract: We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N -oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 32 ( 2019-08-06), p. 15784-15791
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 32 ( 2019-08-06), p. 15784-15791
    Abstract: Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, T ph , ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, T meta , and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, T gel , the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near T gel is associated with a remarkably fragile solid-like gel structure, which can form below either the metastable or the spinodal region of the phase diagram.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 36 ( 2009-09-08), p. 15249-15253
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 36 ( 2009-09-08), p. 15249-15253
    Abstract: Anion effects on the cloud-point temperature for the liquid−liquid phase transition of lysozyme were investigated by temperature gradient microfluidics under a dark field microscope. It was found that protein aggregation in salt solutions followed 2 distinct Hofmeister series depending on salt concentration. Namely, under low salt conditions the association of anions with the positively charged lysozyme surface dominated the process and the phase transition temperature followed an inverse Hofmeister series. This inverse series could be directly correlated to the size and hydration thermodynamics of the anions. At higher salt concentrations, the liquid–liquid phase transition displayed a direct Hofmeister series that correlated with the polarizability of the anions. A simple model was derived to take both charge screening and surface tension effects into account at the protein/water interface. Fitting the thermodynamic data to this model equation demonstrated its validity in both the high and low salt regimes. These results suggest that in general positively charged macromolecular systems should show inverse Hofmeister behavior only at relatively low salt concentrations, but revert to a direct Hofmeister series as the salt concentration is increased.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages