Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (66)
  • EDP Sciences  (66)
Type of Medium
  • Online Resource  (66)
Publisher
  • EDP Sciences  (66)
Language
Subjects(RVK)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A37-
    Abstract: Context. In the first months after its launch in July 2019, the extended Roentgen Survey with an Imaging Telescope Array (eROSITA) on board Spektrum-Roentgen-Gamma performed long-exposure observations in the regions around supernova (SN) 1987A and super-nova remnant (SNR) N132D in the Large Magellanic Cloud (LMC). Aims. We analysed the distribution and the spectrum of the diffuse X-ray emission in the observed fields to determine the physical properties of the hot phase of the interstellar medium (ISM). Methods. Spectral extraction regions were defined using the Voronoi tessellation method. The spectra were fit with a combination of thermal and non-thermal emission models. The eROSITA data are complemented by newly derived column density maps for the Milky Way and the LMC, 888 MHz radio continuum map from the Australian Square Kilometer Array Pathfinder, and optical images of the Magellanic Cloud Emission Line Survey. Results. We detect significant emission from thermal plasma with kT = 0.2 keV in all the regions. There is also an additional higher- temperature emission component from a plasma with kT ≈ 0.7 keV. The surface brightness of this component is one order of magnitude lower than that of the lower-temperature component. In addition, non-thermal X-ray emission is significantly detected in the superbubble 30 Dor C. The absorbing column density N H in the LMC derived from the analysis of the X-ray spectra taken with eROSITA is consistent with the N H obtained from the emission of the cold medium over the entire area. Neon abundance is enhanced in the regions in and around 30 Dor and SN 1987A, indicating that the ISM has been chemically enriched by the young stellar population. In the centre of 30 Dor, there are two bright extended X-ray sources, which coincide with the stellar cluster RMC 136 and the Wolf-Rayet stars RMC 139 and RMC 140. For both regions the emission is best modelled with a high-temperature ( kT 〉 1 keV) non-equilibrium ionisation plasma emission and a non-thermal component with a photon index of Γ = 1.3. In addition, we detect an extended X-ray source at the position of the optical SNR candidate J0529-7004 with thermal emission, and thus confirm its classification as an SNR. Conclusions. Using data from the early observations of the regions around SN 1987A and SNR N132D with eROSITA we confirm that there is thermal interstellar plasma in the entire observed field. eROSITA with its large field of view and high sensitivity at lower X-ray energies allows us for the first time to carry out a detailed study of the ISM at high energies consistently over a large region in the LMC. We thus measure the properties of the interstellar plasma and the distribution of non-thermal particles and derive the column density of the cold matter on the line of sight.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 656 ( 2021-12), p. A132-
    Abstract: The orbital observatory Spectrum-Roentgen-Gamma (SRG), equipped with the grazing-incidence X-ray telescopes Mikhail Pavlinsky ART-XC and eROSITA, was launched by Roscosmos to the Lagrange L2 point of the Sun–Earth system on July 13, 2019. The launch was carried out from the Baikonur Cosmodrome by a Proton-M rocket with a DM-03 upper stage. The German telescope eROSITA was installed on SRG under an agreement between Roskosmos and the DLR, the German Aerospace Agency. In December 2019, SRG started to perform its main scientific task: scanning the celestial sphere to obtain X-ray maps of the entire sky in several energy ranges (from 0.2 to 8 keV with eROSITA, and from 4 to 30 keV with ART-XC). By mid-June 2021, the third six-month all-sky survey had been completed. Over a period of four years, it is planned to obtain eight independent maps of the entire sky in each of the energy ranges. The sum of these maps will provide high sensitivity and reveal more than three million quasars and over one hundred thousand massive galaxy clusters and galaxy groups. The availability of eight sky maps will enable monitoring of long-term variability (every six months) of a huge number of extragalactic and Galactic X-ray sources, including hundreds of thousands of stars with hot coronae. In addition, the rotation of the satellite around the axis directed toward the Sun with a period of four hours enables tracking the faster variability of bright X-ray sources during one day every half year. The chosen strategy of scanning the sky leads to the formation of deep survey zones near both ecliptic poles. The paper presents sky maps obtained by the telescopes on board SRG during the first survey of the entire sky and a number of results of deep observations performed during the flight to the L2 point in the frame of the performance verification program, demonstrating the capabilities of the observatory in imaging, spectroscopy, and timing of X-ray sources. It is planned that in December 2023, the observatory will for at least two years switch to observations of the most interesting sources in the sky in triaxial orientation mode and deep scanning of selected celestial fields with an area of up to 150 square degrees. These modes of operation were tested during the performance verification phase. Every day, data from the SRG observatory are dumped onto the largest antennas of the Russian Deep Space Network in Bear Lakes and near Ussuriysk.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    EDP Sciences ; 2023
    In:  Astronomy & Astrophysics Vol. 676 ( 2023-8), p. A3-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 676 ( 2023-8), p. A3-
    Abstract: Context. SRG/eROSITA is situated in a halo orbit around L2 where the highly variable solar wind charge exchange (SWCX) emission from Earth’s magnetosheath is expected to be negligible. The soft X-ray foreground emissions from the local hot bubble (LHB) and the remaining heliospheric SWCX emissions could be studied in unprecedented detail with eROSITA All-Sky Survey (eRASS) data in a 6-month cadence and better spectral resolution than ROSAT. Aims. We aim to use eRASS data of the sight lines towards three giant molecular clouds away from the Galactic plane to isolate and study the soft X-ray diffuse foreground emission. These X-ray shadows will serve as calibration baselines for the future three-dimensional structural study of the LHB. Methods. We conducted spectral analysis on the diffuse X-ray spectra of these clouds from the first four eRASSs to estimate and separate the heliospheric SWCX contribution from the LHB emission. Results. We find the density of the LHB to be independent of the sight line with n e ~ 4 × 10 −3 cm −3 , but not the temperature. We report a lower temperature of kT LHB = 0.084 ± 0.004 keV towards Chamaeleon II & III (Cha II & III) than Ophiuchus (Oph) and Corona Australis (CrA), in which we measured 0.102 ± 0.006 and 0.112 ± 0.009 keV, respectively. We measured the emission measure of the LHB to be ~2 × 10 −3 cm −6 pc at medium Galactic latitudes (| b | ~ 20°). A monotonic increase in the SWCX contribution has been observed since the start of 2020, coincidental with the beginning of solar cycle 25. For Oph, SWCX has dominated the LHB in the 0.3−0.7 keV band intensity since eRASS2. We observed lower SWCX contributions in Cha II & III and CrA, consistent with the expected decreasing solar wind ion density at high heliographic latitudes.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A8-
    Abstract: The 140-square-degrees Final Equatorial-Depth Survey (eFEDS) field, observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma mission, provides a first look at the variable eROSITA sky. We analysed the intrinsic X-ray variability of the eFEDS sources and provide X-ray light curves and tables with variability test results in the 0.2–2.3 keV (soft) and 2.3–5.0 keV (hard) bands. We performed variability tests using the traditional normalised excess variance and maximum amplitude variability methods (as performed for the 2RXS catalogue), and we present results from the Bayesian excess variance and Bayesian block methods. We identified 65 sources as being significantly variable in the soft band. In the hard band, only one source is found to vary significantly. For the most variable sources, the light curves are well fit by an empirical stellar flare model and reveal extreme flare properties. A few highly variable active galactic nuclei have also been detected. About half of the variable eFEDS sources are detected in the X-rays for the first time with eROSITA. Comparison with 2RXS and XMM-Newton observations provides variability information on timescales of years to decades.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A27-
    Abstract: Context. The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma satellite has started to detect new X-ray sources over the full sky at an unprecedented rate. Understanding the performance and selection function of the source detection is important for the subsequent scientific analysis of the eROSITA catalogs. Aims. Through simulations, we test and optimize the eROSITA source detection procedures, and we characterize the detected catalog quantitatively. Methods. Taking the eROSITA Final Equatorial-Depth Survey (eFEDS) as an example, we ran extensive photon-event simulations based on our best knowledge of the instrument characteristics, the background spectrum, and the population of astronomical X-ray sources. We introduce a method of analyzing source detection completeness, purity, and efficiency based on the origin of each photon. Results. According to the source detection efficiency measured in the simulation, we chose a two-pronged strategy to build eROSITA X-ray catalogs, creating a main catalog using only the most sensitive band (0.2–2.3 keV) and an independent hard-band-selected catalog using multiband detection in a range up to 5 keV. Because our mock data are highly representative of the real eFEDS data, we used the mock catalogs to measure the completeness and purity of the eFEDS catalogs as a function of multiple parameters, such as detection likelihood, flux, and luminosity. These measurements provide a basis for choosing the eFEDS catalog selection thresholds. The mock catalogs (available with this paper) can be used to construct the selection function of active galactic nuclei and galaxy clusters. A direct comparison of the output and input mock catalogs also gives rise to a correction curve that converts the raw point-source flux distribution into the intrinsic number counts distribution.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-3), p. A6-
    Abstract: The ultra-soft narrow-line Seyfert 1 galaxy 1H 0707−495 is a well-known and highly variable active galactic nucleus (AGN), with a complex, steep X-ray spectrum, and has been studied extensively with XMM-Newton . 1H 0707−495 was observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) aboard the Spectrum-Roentgen-Gamma (SRG) mission on October 11, 2019, for about 60 000 s as one of the first calibration and pointed verification phase (CalPV) observations. The eROSITA light curves show significant variability in the form of a flux decrease by a factor of 58 with a 1 σ error confidence interval between 31 and 235. This variability is primarily in the soft band, and is much less extreme in the hard band. No strong ultraviolet variability has been detected in simultaneous XMM-Newton Optical Monitor observations. The UV emission is L UV ≈ 10 44  erg s −1 , close to the Eddington limit. 1H 0707−495 entered the lowest hard flux state seen in 20 yr of XMM-Newton observations. In the eROSITA All-Sky Survey (eRASS) observations taken in April 2020, the X-ray light curve is still more variable in the ultra-soft band, but with increased soft and hard band count rates more similar to previously observed flux states. A model including relativistic reflection and a variable partial covering absorber is able to fit the spectra and provides a possible explanation for the extreme light-curve behaviour. The absorber is probably ionised and therefore more transparent to soft X-rays. This leaks soft X-rays in varying amounts, leading to large-amplitude soft-X-ray variability.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-3), p. A7-
    Abstract: We report the discovery of a giant dust scattering ring around the Black Hole transient MAXI J1348−630 with SRG/eROSITA during its first X-ray all-sky survey. During the discovery observation in February 2020, the ring had an outer diameter of 1.3 deg, growing to 1.6 deg by the time of the second all-sky survey scan in August 2020. This makes the new dust ring by far the largest X-ray scattering ring observed so far. Dust scattering halos, in particular the rings found around transient sources, provide an opportunity to make precise distance measurements towards the original X-ray sources. We combine data from SRG/eROSITA, XMM-Newton , MAXI, and Gaia to measure the geometrical distance of MAXI J1348−630. The Gaia data place the scattering dust at a distance of 2050 pc. Based on the measured time lags and the geometry of the ring we find MAXI J1348−630 at a distance of 3390 pc with a statistical uncertainty of only 1.1% and a systematic uncertainty of 10% caused mainly by the parallax offset of Gaia . This result makes MAXI J1348−630 one of the black hole transients with the most accurately determined distances. The new distance leads to a revised mass estimate for the black hole of 11 ± 2 M ⊙ . The transition to the soft state during the outburst occurred when the bolometric luminosity of MAXI J1348−630 reached 1.7% of its Eddington luminosity.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A1-
    Abstract: Context. The eROSITA X-ray telescope on board the Spectrum-Poentgen-Gamma (SPG) observatory combines a large field of view and a large collecting area in the energy range between ~0.2 and ~8.0 keV. This gives the telescope the capability to perform uniform scanning observations of large sky areas. Aims. SRG/eROSITA performed scanning observations of the ~140 square degree eROSITA Final Equatorial Depth Survey field (the eFEDS field) as part of its performance verification phase ahead of the planned four year of all-sky scanning operations. The observing time of eFEDS was chosen to slightly exceed the depth expected in an equatorial field after the completion of the all - sky survey. While verifying the capability of eROSITA to perform large-area uniform surveys and saving as a test and training dataset to establish calibration and data analysis procedures, the eFEDS survey also constitutes the largest contiguous soft X-ray survey at this depth to date, supporting a range of early eROSITA survey science investigations. Here we (i) present a catalogue of detected X-ray sources in the eFEDS field providing information about source positions and extent, as well as fluxes in multiple energy bands, and (ii) document the suite of tools and procedures developed for eROSITA data processing and analysis, which were validated and optimised by the eFEDS work. Methods. The data were fed through a standard data processing pipeline, which appltes X-ray event calibration and provides a set of standard calibrated data products. A mutiti-stage source detection procedure, building in part on experience from XMM-Newton, was optimised and calibrated by performing realistic simulations of the eROSITA eFEDS observations. Source fluxes were computed in multiple standard energy bands by forced point source fitting and aperture photometry. We cross-matched the eROSITA eFEDS source catalogue with previous XMM-ATLAS observations, which confirmed the excellentt agreement of the eROSITA and XMM-ATLAS source fluxes. Astrometric corrections were performed by cross-matching the eROSITA source positions with an optical reference catalogue of quasars. Results. We present a primary catalogue of 27 910 X-ray sources (542 of which are significantly spatially extended) detected in the 0.2–2.3 keV energy range with detection likelihoods ≥6, corresponding to a (point source) flux limit of 6.5 × 10 –15 erg cm –2 s –1 in the 0.5–2.0 keV energy band (80% completeness). A supplementary catalogue contains 4774 low-significance source candidates with detection likelihoods between 5 and 6. In addition, a hard-band sample of 246 sources detected in the energy range 22.3–5.0 keV above a detection likelihood of 10 is provided. In an appendix, we finally describe the dedicated data analysis software package, the eROSITA calibration database, and the standard calibrated data products.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 641 ( 2020-09), p. A137-
    Abstract: Context. The XMM-Newton Survey Science Centre Consortium (SSC) develops software in close collaboration with the Science Operations Centre to perform a pipeline analysis of all XMM-Newton observations. In celebration of the twentieth anniversary of the XMM-Newton launch, the SSC has compiled the fourth generation of serendipitous source catalogues, 4XMM. Aims. The catalogue described here, 4XMM-DR9s, explores sky areas that were observed more than once by XMM-Newton . These observations are bundled in groups referred to as stacks. Stacking leads to a higher sensitivity, resulting in newly discovered sources and better constrained source parameters, and unveils long-term brightness variations. Methods. The 4XMM-DR9s catalogue was constructed from simultaneous source detection on overlapping observations. As a novel feature, positional rectification was applied beforehand. Observations with all filters and suitable camera settings were included. Exposures with a high background were discarded. The high-background thresholds were determined through a statistical analysis of all exposures in each instrument configuration. The X-ray background maps used in source detection were modelled via an adaptive smoothing procedure with newly determined parameters. Source fluxes were derived for all contributing observations, irrespective of whether the source would be detectable in an individual observation. Results. The new catalogue lists the X-ray sources detected in 1329 stacks with 6604 contributing observations over repeatedly covered 300 square degrees in the sky. Most stacks are composed of two observations, the largest one comprises 352 observations. We find 288 191 sources of which 218 283 were observed several times. The number of observations of a source ranges from 1 to 40. Auxiliary products, like X-ray full-band and false-colour images, long-term X-ray light curves, and optical finding charts, are published as well. Conclusions. 4XMM-DR9s contains new detections and is considered a prime resource to explore long-term variability of X-ray sources discovered by XMM-Newton . Regular incremental releases, including new public observations, are planned.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A35-
    Abstract: Aims. We present the results of the analysis of five observations of the globular clutser 47 Tucanae (47 Tuc) with the extended Roentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spektrum-Roentgen-Gamma (Spektr-RG, SRG). We study the X-ray population in the field of one of the most massive globular clusters in our Milky Way. We focused on the classification of point-like sources in the field of 47 Tuc. The unresolved dense core of 47 Tuc (1.7 radius) and also sources that show extended emission are excluded from this study. Methods. We applied different methods of X-ray spectral and timing analysis together with multi-wavelength studies to classify the X-rays sources in the field of 47 Tuc. Results. We detected 888 point-like sources in the energy range of 0.2–5.0 keV. We identified 126 background active galactic nuclei and 25 foreground stars. One of the foreground stars is classified as a variable M dwarf. We also classified 14 X-ray sources as members of 47 Tuc, including one symbiotic star, two quiescent low-mass X-ray binaries, and four cataclysmic variables. There are also five X-ray sources that can either be a cataclysmic variable or a contact binary, and also one X-ray source can be an active binary (type RS CVn). We identified one X-ray binary that belongs to the Small Magellanic Cloud. Moreover, we calculated the X-ray luminosity function of 47 Tuc. No significant population that seems to belong to the globular cluster is observed in the energy range of 0.5–2.0 keV using eROSITA observations.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages