feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
  • Berlin International  (4)
  • Zuse-Institut Berlin  (1)
  • HEROLD
  • Landeshauptarchiv Brandenburg
Type of Medium
Language
Region
Subjects(RVK)
  • 1
    Book
    Book
    Wellesley, Mass. :Peters,
    UID:
    almafu_BV009643181
    Format: XVII, 393 S. : zahlr. graph. Darst.
    ISBN: 1-56881-004-0
    Note: Literaturverz. S. [389] - 393
    Language: English
    Subjects: Mathematics
    RVK:
    Keywords: Geometrische Modellierung
    Author information: Böhm, Wolfgang 1928-2018
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    kobvindex_INTNLM010893229
    Format: 1 online resource (xxii, 410 p) , ill
    ISBN: 9781843765622
    Series Statement: Edward Elgar E-Book Archive
    Content: part 1. Progress : a contested concept? -- part 2. Progress in the history of ideas : alternative approaches -- part 3. Roundtable : is there progress in economics? -- part 4. Normative economics -- part 5. Monetary economics -- part 6. Trade and location -- part 7. Currents of thought -- part 8. Reflections on the classical long-period method
    Content: This thought-provoking book discusses the concept of progress in economics and investigates whether any advance has been made in its different spheres of research. The authors look back at the history, successes and failures of their respective fields and thoroughly examine the notion of progress from an epistemological and methodological perspective
    Note: Includes bibliographical references and index
    Additional Edition: Available in another form ISBN 1840646837
    Additional Edition: ISBN 9781840646832(hardback)
    Additional Edition: ISBN 1840646837
    Additional Edition: ISBN 9781840646832
    Language: English
    URL: FULL  ((Currently Only Available on Campus))
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin/Boston : De Gruyter, Incorporated
    UID:
    kobvindex_INTEBC1563368
    Format: 1 online resource (708 pages)
    Edition: 1st ed.
    ISBN: 9783110302783
    Series Statement: De Gruyter Textbook Series
    Note: Intro -- Preface -- Content -- 1 Introduction -- 2 Mathematical fundamentals -- 3 Imaging technology -- 4 Analytical methods -- 5 Digital image processing -- 6 Measuring tasks and systems -- 7 Measurement design and quality -- 8 Example applications -- 9 Literature -- Abbreviations -- Image sources -- Index
    Additional Edition: Print version Luhmann, Thomas Close-Range Photogrammetry and 3D Imaging Berlin/Boston : De Gruyter, Inc.,c2013 ISBN 9783110302691
    Language: English
    Keywords: Electronic books
    URL: FULL  ((OIS Credentials Required))
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Berlin/Boston : De Gruyter, Incorporated
    UID:
    kobvindex_INT59407
    Format: 1 online resource (708 pages)
    Edition: 1st ed.
    ISBN: 9783110302783
    Series Statement: De Gruyter Textbook Series
    Note: Intro -- Preface -- Content -- 1 Introduction -- 2 Mathematical fundamentals -- 3 Imaging technology -- 4 Analytical methods -- 5 Digital image processing -- 6 Measuring tasks and systems -- 7 Measurement design and quality -- 8 Example applications -- 9 Literature -- Abbreviations -- Image sources -- Index
    Additional Edition: Print version Luhmann, Thomas Close-Range Photogrammetry and 3D Imaging Berlin/Boston : De Gruyter, Inc.,c2013 ISBN 9783110302691
    Language: English
    Keywords: Electronic books
    URL: FULL  ((OIS Credentials Required))
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    kobvindex_INTEBC6425461
    Format: 1 online resource (411 pages)
    Edition: 1st ed.
    ISBN: 9783030621360
    Note: Intro -- Preface -- Table of Contents -- 1 CrESt Use Cases -- 1.1 Introduction -- 1.2 Vehicle Platooning -- 1.3 Adaptable and Flexible Factory -- 1.4 Autonomous Transport Robots -- 2 Engineering of Collaborative Embedded Systems -- 2.1 Introduction -- 2.2 Background -- 2.3 Collaborating Embedded Systems -- 2.3.1 Collaborative and Collaborating Systems -- 2.3.2 Goals of System Networks -- 2.3.3 Coordination in System Networks -- 2.3.4 Dynamics in System Networks -- 2.3.5 Functions -- 2.4 Problem Dimensions of Collaborative Embedded Systems -- 2.4.1 Challenges Related to Collaboration -- 2.4.2 Challenges Related to Dynamics -- 2.5 Application in the Domains "Cooperative Vehicle Automation" and "Industry 4.0" -- 2.5.1 Challenges in the Application Domain "Cooperative Vehicle Automation" -- Collaboration -- Dynamics -- 2.5.2 Challenges in the Application Domain "Industry 4.0" -- Collaboration -- Dynamics -- 2.6 Concepts and Methods for the Development of Collaborative Embedded Systems -- 2.6.1 Enhancements Regarding SPES2020 and SPES_XT -- 2.6.2 Collaboration -- Goals -- Functions and Behavior -- Architecture and Structure -- Communication -- 2.6.3 Dynamics -- Goals -- Functions and Behavior -- Architecture and Structure -- Context -- Uncertainty -- 2.7 Conclusion -- 2.8 Literature -- 2.9 Appendix -- 3 Architectures for Flexible Collaborative Systems -- 3.1 Introduction -- 3.2 Designing Reference Architectures -- 3.2.1 Method for Designing Reference Architectures -- 3.2.2 Application Example: Reference Architecture for Adaptable and Flexible Factories -- 3.3 Reference Architecture for Operator Assistance Systems -- 3.3.1 Simulation-Based Operator Assistance -- 3.3.2 Design Decisions -- 3.3.3 Technical Reference Architecture -- 3.3.4 Workflow of Services and Data Flow -- 3.3.5 Application Example for an Adaptable and Flexible Factory , 3.4 Checkable Safety Cases for Architecture Design -- 3.4.1 Checkable Safety Case Models - A Definition -- 3.4.2 Checkable Safety Case Patterns -- 3.4.3 An Example of Checkable Safety Case Patterns -- 3.5 Conclusion -- 3.6 Literature -- 4 Function Modeling for Collaborative Embedded Systems -- 4.1 Introduction -- 4.2 Methodological Approach -- 4.3 Background -- 4.4 Metamodel for Functions of CESs and CSGs -- 4.4.1 Systems, CESs, and CSGs -- 4.4.2 Functions -- 4.4.3 Goal Contribution and Fulfillment -- 4.4.4 Roles -- 4.4.5 Context and Adaptivity -- 4.5 Evaluation of the Metamodel -- 4.5.1 Abstraction -- 4.5.2 Relationships between Functions -- 4.5.3 Openness and Dynamicity -- 4.5.4 Goal Contributions -- 4.5.5 Relationships Between Functions and Systems -- 4.5.6 Input/Output Compatibility -- 4.5.7 Runtime Restructuring -- 4.6 Application of the Metamodel -- 4.6.1 Example from the Adaptable and Flexible Factory -- 4.6.2 Modeling of Goals for Transport Robots -- 4.7 Related Work -- 4.8 Conclusion -- 4.9 Literature -- 5 Architectures for Dynamically Coupled Systems -- 5.1 Introduction -- 5.2 Specification Modeling of the Behavior of Collaborative System Groups -- 5.3 Modeling CES Functional Architectures -- 5.3.1 Scenario -- 5.3.2 Modelling -- 5.3.3 Analysis -- 5.4 Extraction of Dynamic Architectures -- 5.4.1 Methods -- 5.4.2 Software Product Line Engineering -- 5.4.3 Product-Driven Software Product Line Engineering -- 5.4.4 Family Mining - A Method for Extracting Reference Architectures from Model Variants -- 5.4.5 Summary -- 5.5 Functional Safety Analysis (Online) -- 5.5.1 Functional Testing -- 5.5.2 Communication Errors -- 5.6 Conclusion -- 5.7 Literature -- 6 Modeling and Analyzing Context-Sensitive Changes during Runtime -- 6.1 Introduction and Motivation -- 6.2 Solution Concept -- 6.3 Ontology and Modeling -- 6.3.1 Ontology Building , 6.3.2 Capability Modeling -- 6.3.3 Variability Modeling for Context-Sensitive Reconfiguration -- 6.3.4 Scenario-Based Modeling -- 6.4 Model Integration and Execution -- 6.4.1 Model Generation for Simulation Models -- Model Generation via Knowledge Graph -- Application to a Real Production System -- 6.4.2 Capability Matching -- 6.5 Conclusion -- 6.6 Literature -- 7 Handling Uncertainty in Collaborative Embedded Systems Engineering -- 7.1 Uncertainty in Collaborative Embedded Systems -- 7.1.1 Conceptual Ontology for Handling Uncertainty -- 7.1.2 Different Kinds of Uncertainty -- 7.2 Modeling Uncertainty -- 7.2.1 Orthogonal Uncertainty Modeling -- Modeling Concepts and Notation -- Example -- 7.2.2 Modeling Uncertainty in Traffic Scenarios -- Modeling Traffic Scenarios for CSGs -- Behavioral Uncertainty Modeling -- Risk Assessment -- 7.3 Analyzing Uncertainty -- 7.3.1 Identifying Epistemic Uncertainties -- Uncertainty Sources at the Type Level -- Uncertainty Sources at the Instance Level -- EURECA -- 7.3.2 Assessing Data-Driven Uncertainties -- Three Types of Uncertainty Sources -- Managing Uncertainty during Operation -- Uncertainty Wrapper - Architecture and Application -- Uncertainty Wrappers - Limitations and Advantages -- 7.4 Conclusion -- 7.5 Literature -- 8 Dynamic Safety Certification for Collaborative Embedded Systems at Runtime -- 8.1 Introduction and Motivation -- 8.2 Overview of the Proposed Safety Certification Concept -- 8.3 Assuring Runtime Safety Based on Modular Safety Cases -- 8.3.1 Modeling CESs and their Context -- Modeling the Context -- Content Ontology -- Modeling Context in the Adaptable Factory -- 8.3.2 Runtime Uncertainty Handling -- Concept Overview -- Development of a U-Map for the Adaptable Factory -- 8.3.3 Runtime Monitoring of CESs and their Context -- Meta-model SQUADfps -- Case Study Example , 8.3.4 Integrated Model-Based Risk Assessment -- 8.3.5 Dynamic Safety Certification -- 8.4 Design and Runtime Contracts -- 8.4.1 Design-Time Approach for Collaborative Systems -- Creating the CSG Specification -- Safety-Relevant Activities -- 8.4.2 Contracts Concept -- 8.4.3 Runtime Evaluation of Safety Contracts -- Simulative Approach for Validation of Safety Contracts -- Case Study: Vehicle Platoon Example -- 8.5 Conclusion -- 8.6 Literature -- 9 Goal-Based Strategy Exploration -- 9.1 Introduction -- 9.2 Goal Modeling for Collaborative System Groups -- 9.3 Goal-Based Strategy Development -- 9.4 Goal Operationalization (KPI Development) -- 9.5 Modeling Methodology for Adaptive Systems with MATLAB/Simulink -- 9.6 Collaboration Framework for Goal-Based Strategies -- 9.6.1 Fleet Management in Collaborative Resource Networks -- 9.6.2 Collaboration Framework -- 9.6.3 Collaboration Design in Decentralized Fleet Management -- 9.7 Conclusion -- 9.8 Literature -- 10 Creating Trust in Collaborative Embedded Systems -- 10.1 Introduction -- 10.2 Building Trust during Design Time -- Testing framework for CSGs -- Model -- View -- Controller -- 10.3 Building Trust during Runtime -- 10.4 Monitoring Collaborative Embedded Systems -- Runtime Monitoring -- Runtime Monitoring of Collaborative System Groups -- Distributedness: -- Embeddedness: -- Runtime Monitoring of Interaction Protocols -- Monitoring Functional Correctness -- Agreement: -- Existence: -- Maximum: -- Monitoring Correct Timing Behavior -- U -- Ut -- 10.5 Conclusion -- 10.6 Literature -- 11 Language Engineering for Heterogeneous Collaborative Embedded Systems -- 11.1 Introduction -- 11.2 MontiCore -- 11.3 Language Components -- 11.4 Language Component Composition -- 11.5 Language Product Lines -- 11.6 Conclusion -- 11.7 Literature , 12 Development and Evaluation of Collaborative Embedded Systems using Simulation -- 12.1 Introduction -- 12.1.1 Motivation -- 12.1.2 Benefits of Using Simulation -- 12.2 Challenges in Simulating Collaborative Embedded Systems -- 12.2.1 Design Time Challenges -- 12.2.2 Runtime Challenges -- 12.3 Simulation Methods -- 12.4 Application -- 12.5 Conclusion -- 12.6 Literature -- 13 Tool Support for CoSimulation-Based Analysis -- 13.1 Introduction -- 13.2 Interaction of Different Simulations -- 13.3 General Tool Architecture -- 13.4 Implementing Interoperability for Co-Simulation -- 13.5 Distributed Co-Simulation -- 13.6 Analysis of Simulation Results -- 13.7 Conclusion -- 13.8 Literature -- 14 Supporting the Creation of Digital Twins for CESs -- 14.1 Introduction -- 14.2.1 Demonstration -- Automotive Smart Ecosystems -- Smart Grids -- 14.2 Building Trust through Digital Twin Evaluation -- 14.3 Conclusion -- 14.4 Literature -- 15 Online Experiment-Driven Learning and Adaptation -- 15.1 Introduction -- 15.2 A Self-Optimization Approach for CESs -- 15.3 Illustration on CrowdNav -- 15.4 Conclusion -- 15.5 Literature -- 16 Compositional Verification using Model Checking and Theorem Proving -- 16.1 Introduction -- 16.2 Approach -- 16.3 Example -- 16.3.1 Specification -- 16.3.2 Verification -- 16.4 Conclusion -- 16.5 Literature -- 17 Artifact-Based Analysis for the Development of Collaborative Embedded Systems -- 17.1 Introduction -- 17.2 Foundations -- UML/P -- Class Diagrams in UML/P -- Object Diagrams in UML/P -- OCL -- 17.3 Artifact-Based Analysis -- Artifact Model Creation -- Specification of Artifact Data Analysis -- Artifact-Based Analyses -- 17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect -- 17.4.1 Artifact Modeling of Doors NG and Enterprise Architect , 17.4.2 Static Extractor for Doors NG and Enterprise Architect Exports
    Additional Edition: Print version Böhm, Wolfgang Model-Based Engineering of Collaborative Embedded Systems Cham : Springer International Publishing AG,c2020 ISBN 9783030621353
    Language: English
    Keywords: Electronic books
    URL: Full-text  ((OIS Credentials Required))
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages