feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 33, No. 33 ( 2015-11-20), p. 3911-3920
    Kurzfassung: At the molecular level, myeloma is characterized by copy number abnormalities and recurrent translocations into the immunoglobulin heavy chain locus. Novel methods, such as massively parallel sequencing, have begun to describe the pattern of tumor-acquired mutations, but their clinical relevance has yet to be established. Methods We performed whole-exome sequencing for 463 patients who presented with myeloma and were enrolled onto the National Cancer Research Institute Myeloma XI trial, for whom complete molecular cytogenetic and clinical outcome data were available. Results We identified 15 significantly mutated genes: IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD, and FGFR3. The mutational spectrum is dominated by mutations in the RAS (43%) and nuclear factor-κB (17%) pathways, but although they are prognostically neutral, they could be targeted therapeutically. Mutations in CCND1 and DNA repair pathway alterations (TP53, ATM, ATR, and ZNFHX4 mutations) are associated with a negative impact on survival. In contrast, those in IRF4 and EGR1 are associated with a favorable overall survival. We combined these novel mutation risk factors with the recurrent molecular adverse features and international staging system to generate an international staging system mutation score that can identify a high-risk population of patients who experience relapse and die prematurely. Conclusion We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation.
    Materialart: Online-Ressource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Clinical Oncology (ASCO)
    Publikationsdatum: 2015
    ZDB Id: 2005181-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 23 ( 2016-12-01), p. 5783-5794
    Kurzfassung: Purpose: Epigenetic dysregulation is known to be an important contributor to myeloma pathogenesis but, unlike other B-cell malignancies, the full spectrum of somatic mutations in epigenetic modifiers has not been reported previously. We sought to address this using the results from whole-exome sequencing in the context of a large prospective clinical trial of newly diagnosed patients and targeted sequencing in a cohort of previously treated patients for comparison. Experimental Design: Whole-exome sequencing analysis of 463 presenting myeloma cases entered in the UK NCRI Myeloma XI study and targeted sequencing analysis of 156 previously treated cases from the University of Arkansas for Medical Sciences (Little Rock, AR). We correlated the presence of mutations with clinical outcome from diagnosis and compared the mutations found at diagnosis with later stages of disease. Results: In diagnostic myeloma patient samples, we identify significant mutations in genes encoding the histone 1 linker protein, previously identified in other B-cell malignancies. Our data suggest an adverse prognostic impact from the presence of lesions in genes encoding DNA methylation modifiers and the histone demethylase KDM6A/UTX. The frequency of mutations in epigenetic modifiers appears to increase following treatment most notably in genes encoding histone methyltransferases and DNA methylation modifiers. Conclusions: Numerous mutations identified raise the possibility of targeted treatment strategies for patients either at diagnosis or relapse supporting the use of sequencing-based diagnostics in myeloma to help guide therapy as more epigenetic targeted agents become available. Clin Cancer Res; 22(23); 5783–94. ©2016 AACR.
    Materialart: Online-Ressource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2016
    ZDB Id: 1225457-5
    ZDB Id: 2036787-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 723-723
    Kurzfassung: Aberrant chromosomal translocations are seen in ~40% of presenting patients and predominantly involve the IGH locus at 14q32. The five main translocations involving the IGH locus are t(4;14), t(6;14), t(11;14), t(14;16) and t(14;20), which result in over-expression of MMSET/FGFR3, CCND3, CCND1, MAF and MAFB, respectively. In previous clinical trials we have shown that the t(4;14), t(14;16) and t(14;20) are associated with a poor prognosis. In initial sequencing studies of myeloma it has been noted that the spectrum of mutations fall into two groups, one of which is characterised by an APOBEC signature. This signature comprises of C 〉 T, C 〉 G and C 〉 A mutations in a TpC context and comprises only a subset of samples, with the rest having a rather generic mutation signature representing an intrinsic mutational process occurring as a result of the spontaneous deamination of methylated cytosine to thymine. Whole exome sequencing was performed on 463 presentation patients enrolled into the UK Myeloma XI trial. DNA was extracted from germline DNA and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYCloci in order to determine the breakpoints associated with translocations in these genes. Tumor and germline DNA were sequenced to a median of 60x and data processed to generate copy number, acquired variants and translocation breakpoints in the tumor. Progression-free and overall survival was measured from initial randomization and median follow up for this analysis was 25 months. These combined data allow us to examine the effect of translocations on the mutational spectra in myeloma and determine any associations with progression-free or overall survival. Translocations were detected in 232 (50.1%) patients of which 59 patients (12.7%) had a t(4;14), 86 patients (18.6%) a t(11;14), 17 patients (3.7%) a t(14;16), 5 patients (1%) a t(6;14) and 4 patients (0.9%) a t(14;20). MYC translocations were found in 85 patients (18.4%). Using the tiled regions we were able to detect a mutational signature, kataegis, where regional clustering of mutations can be indicative of somatic genomic rearrangements. We found the hallmarks of kataegis in 15 samples (3.2%), where there was enrichment for TpCpH mutations with an inter-mutational distance 〈 1 kb. Where we detected kataegis surrounding MYC there was also an inter-chromosomal translocation involving either IGK or IGL. Interestingly, the partner chromosomes also showed signs of kataegis e.g. in the t(2;8) kataegis was found at IGK and MYC and in the t(8;22) kataegis was found at MYC and IGL. APOBECs are thought to be involved in the generation of kataegis and as such this co-localisation is indicative of APOBEC involvement in the generation of MYCbreakpoints. We found mutation of translocation partner oncogenes, in particular CCND1 was mutated in 10 patients with the t(11;14). There was an association of mutated CCND1 with a poor prognosis when compared with non-mutated t(11;14) patients (OS median of 20.2 months vs. not reached, p=0.005). Mutations were also seen in FGFR3, MAF and MAFB but only in the samples with the respective translocations. The mutations are likely due to somatic hypermutation mediated by AID, an APOBEC family member. We found that t(14;16) and t(14;20) samples have a significantly higher number of mutations compare to the other translocation groups (p=1.65x10-5). These mutations were enriched for those with an APOBEC signature (T(C 〉 T)A, p=9.1x10-5; T(C 〉 T)T, p=0.0014; T(C 〉 G)A, p=0.001; T(C 〉 G)T, p=0.0064), indicating that the ‘maf’ translocation groups are characterized by APOBEC signature mutations, specifically APOBEC3B. When samples are assigned to either an APOBEC or non-APOBEC group the ‘maf’ translocations account for 66.6% of samples in the APOBEC group but only 1.3% of the non-APOBEC group. Here we show three different mutational signatures mediated by the APOBEC family: translocation partner mutation by AID, APOBEC signature mediated by APOBEC3B, and kataegis mediated by an unknown APOBEC family member. We also show for the first time a clinical impact of APOBEC mutations and their association with a poor prognosis. The poor prognosis of this mutational signature is inextricably linked to a high mutation load and the adverse t(14;16) and t(14;20) translocation subgroups. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 7 ( 2019-07), p. 1440-1450
    Materialart: Online-Ressource
    ISSN: 0390-6078 , 1592-8721
    Sprache: Englisch
    Verlag: Ferrata Storti Foundation (Haematologica)
    Publikationsdatum: 2019
    ZDB Id: 2186022-1
    ZDB Id: 2030158-3
    ZDB Id: 2805244-4
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 637-637
    Kurzfassung: Background: The main genetic features of myeloma identified so far have been the presence of balanced translocations at the immunoglobulin heavy chain (IGH) region and copy number abnormalities. Novel methodologies such as massively parallel sequencing have begun to describe the pattern of tumour acquired mutations detected at presentation but their biological and clinical relevance has not yet been fully established. Methods: Whole exome sequencing was performed on 463 presentation patients enrolled into the large UK, phase III, open label, Myeloma XI trial. DNA was extracted from germline DNA and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYC loci in order to determine the breakpoints associated with translocations in these genes. Tumour and germline DNA were sequenced to a median of 60x and data processed to generate copy number, acquired variants and translocation breakpoints in the tumour. Progression-free and overall survival was measured from initial randomization and median follow up for this analysis was 25 months. These combined data allow us to examine the effect of translocations on the mutational spectra in myeloma and determine any associations with progression-free or overall survival. Results: We identified 15 significantly mutated genes comprising IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD and FGFR3. By analysing the correlation between mutations and cytogenetic events using a probabilistic approach, we describe the co-segregation of t(11;14) with CCND1 mutations (Corr 0.28,BF=1.5x106 (Bayes Factor)) and t(4;14) with FGFR3 (Corr=0.40, BF=1.12x1014) and PRKD2 mutations (Corr=0.23, BF=3507). The mutational spectrum is dominated by mutations in the RAS (43%) and NF-κB (17%) pathway, however they are prognostically neutral. We describe for the first time in myeloma mutations in genes such as CCND1 and DNA repair pathway alterations (TP53, ATM, ATR and ZFHX4 mutations) that are associated with a negative impact on survival in contrast to those in IRF4 and EGR1 that are associated with a favourable overall-survival. By combining these novel risk factors with the previously described adverse cytogenetic features and ISS we were able to demonstrate in a multivariate analysis the independent prognostic relevance of copy number and structural abnormalities (CNSA) such as del(17p), t(4;14), amp(1q), hyperdiploidy and MYC translocations and mutations in genes such as ATM/ATR, ZFHX4, TP53 and CCND1. We demonstrate that the more adverse features a patient had the worse his outcome was for both PFS (one lesion: HR=1.6, p=0.0012, 2 lesions HR=3.3, p 〈 0.001, 3 lesions HR=15.2, p 〈 0.001) and for OS (one lesion: HR=2.01, p=0.0032, 2 lesions HR=4.79, p 〈 0.001, 3 lesions HR=9.62, p 〈 0.001). When combined with ISS, we identified 3 prognostic groups (Group 1: ISS I/II with no CNSA or mutation, Group 2: ISS III with no CNSA or mutation or ISS I/II/III with one CNSA or mutation, Group 3: Two CNSA or mutation regardless of their ISS) thus identifying three distinct prognostic groups with a high risk population representing 13% of patients that both relapsed [median PFS 10.6 months (95% CI 8.7-17.9) versus 27.7 months (95% CI 25.99-31.1), p 〈 0.001] and died prematurely [median overall survival 23.2 months (95% CI 18.2-35.3.) versus not reached, p 〈 0.001] regardless of their ISS score. Finally, we have also identified a list of potentially actionable mutations for which targeted therapy already exists opening the way into personalized medicine in myeloma. Conclusion: We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation. Identifying high risk populations or patients that may benefit from targeted therapy may open the way into personalized medicine for myeloma. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Blood, American Society of Hematology, Vol. 130, No. 14 ( 2017-10-05), p. 1639-1643
    Kurzfassung: A significant proportion of MM is dominated by neutral evolutionary dynamics. Neutral MM tumors are characterized by shorter survival, consistent with reduced sensitivity to drugs targeting the MM microenvironment.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2017
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2194-2194
    Kurzfassung: Dysregulation of the epigenome plays an important role in the pathogenesis of the plasma cell malignancy myeloma (MM). For example the H3K36 methyltransferase, MMSET, is overexpressed as a result of t(4;14) in 15% of patients and associated with a distinct DNA methylation pattern and shorter survival. Epigenetic modifiers may also be deregulated due to somatic mutations, seen in the histone demethylase, KDM6A/UTX (Van Haaften et al, Nat.Genet. 2009) and histone methyltransferase, MLL(Chapman et al, Nature 2011). We analysed the spectrum and clinical implications of epigenetic gene mutations in the largest series of newly diagnosed MM patients sequenced to date. Whole exome sequencing was performed on DNA extracted from tumour (CD138+) and peripheral blood samples from patients entering the NCRI Myeloma XI trial (n=463) using SureSelect (Agilent) with extra baits to cover IGH, IGK, IGL and MYC loci, median depth 60x. Data were processed to identify acquired variants, copy number, indels and translocation breakpoints and annotated for potentially deleterious mutations. Significantly mutated genes were detected using MutSigCV (v1.4) inputting all SNV and short indels (q-value threshold 0.1). Survival from initial randomization had median follow up of 25 months. The gene encoding the linker histone protein Histone 1.4, HIST1H1E was mutated in 2.8% of samples and one of the most significantly mutated genes in myeloma (p 〈 1x10-10, q 〈 1x10-10). Average cancer cell fraction in HIST1H1E mutated samples was close to 100%, suggesting these mutations may be an early event in MM pathogenesis. There were also recurrent mutations in genes encoding variants of the Histone 1 protein, HIST1H1B (0.22%), HIST1H1C (2.59%), HIST1H1D (0.65%); the percentage of patients with a mutation in any variant totals 6% (28/463). Mutations clustered in the globular domain and multiple sequence alignment revealed sites of recurrent mutation across variants. Along with the absence of mutations in the fifth common protein variant HIST1H1A,this suggests that these are not passenger mutations and may carry some significance to MM pathogenesis. Histone 1 mutations have been demonstrated to play an important role in other haematological malignancies but have not been previously characterized in MM. Potentially deleterious mutations in histone methyltransferase/demethylase enzymes were also seen in 24% of patients, though the percentage of patients with each gene mutated was low. The most frequently mutated gene family in the methyltransferases was MLL/2/3/4/5 (7% of patients). There were no mutations in EZH2, recurrently mutated in other B cell malignancies, and none of the MMSET activating mutations p.E1099K described in the MM1.S myeloma cell line were seen. The most frequently mutated demethylase gene was KDM3B in 1.5% of patients. KDM6A/UTX mutations occurred in 1.3% of patients and targeted analysis for deletion of whole exons increased the number of patients affected by a potentially inactivating lesion to 3%. Patients carrying a KDM6A mutation or deletion appear to have a shorter OS at current follow up than wild type (medians NR, log-rank p=0.0498, % alive at 2 years 51% CI 30-85 vs 80% CI 77-84). Data suggest that EZH2 inhibitors, currently in development for lymphoma, could be investigated for these patients as inhibiting the H3K27 methyltransferase may counteract the increased H3K27 methylation resulting from inactivation of the demethylase. DNA methylation modifiers were found to be mutated in 4% of patients. These include mutations previously reported in glioma (p.R132C in IDH1) and AML/MDS (p.R140W in IDH2 and p.C1378Y in TET2). Collectively, mutations in any DNA methylation modifier (TET1/2/3 n=9, IDH1/2 n=2 or DNMT1/3A/B n=6) are associated with a shorter OS (medians NR, p=0.045, % alive at 2 years 58% CI 39-88 vs 80% CI 76-84). Patients with these mutations might be amenable to demethylating agents such as azacytidine and newer agents such as IDH inhibitors currently in early stages of development. This is the first extensive analysis of the spectrum of mutations in epigenetic modifiers in a uniformly treated population in MM. An association with clinical outcome is suggested in our dataset but will need validation due to the low overall frequency of the mutations. This data further emphasises the importance of epigenetics in MM and provides new potential targets for personalised therapeutic strategies for patients. Disclosures Pawlyn: Celgene: Honoraria. Walker:Onyx Pharmaceuticals: Consultancy, Honoraria.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2015-04-23)
    Materialart: Online-Ressource
    ISSN: 2041-1723
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2015
    ZDB Id: 2553671-0
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 640-640
    Kurzfassung: Multiple myeloma (MM) is a disease characterized by the abnormal proliferation of plasma cells in the bone marrow. We and others have recently demonstrated the existence of different myeloma subclones phylogenetically related to the founding clone. This intra-clonal heterogeneity is the basis for disease progression, treatment resistance, and relapse. However, the clinical and biological relevance of the presence and diversity of different myeloma subclones has not been fully established. In this study, we used whole exome sequencing (WES) plus a pull down of the MYC, IGH, IGL and IGK loci as a tool to analyze the largest series of presenting cases of myeloma (463 patients) to date, which were entered into the Myeloma XI trial (NCT01554852). DNA from both tumor and peripheral blood samples were used in the exome capture protocol following the SureSelect Target Enrichment System for Illumina Paired-End Sequencing Library v1.5. Exome reads were used to call single nucleotide variants (SNVs), indels, translocations, and copy number aberrations. The proportion of tumor cells containing an SNV was inferred. The presence and proportion of subclones were defined in a subset of 437 patients using a genetic algorithm based-tool (GAUCHO), which also calculated different indices of clonal diversity: number of clones, mean pairwise genetic divergence, Shannon and Inverse Simpson diversity index and Berger-Parker dominance index. Based on these results, we aimed to determine the clinical implications of the number of mutations and the subclonal diversity of MM at presentation in progression free (PFS) and overall survival (OS). We found that MM patients with t(14;16) and t(14;20) had more exonic mutations (not including Ig variants) than the rest of samples (median 87 versus 43, p 〈 0.001). Additionally, we found that MM patients with an APOBEC signature or with mutations in ATM/ATR had significantly more mutations than patients without these genetic lesions with a median number of 137 mutations (range 20-569) and 84.5 (range 33-319) respectively (p 〈 0.001). Subsequently, we identified patients with high number of mutations ( 〉 59 mutations) that had a worse outcome in terms of OS (2-year OS rate of 71% (95% CI, 63-80%) vs. 82% (95% CI, 78-87%), p=0.02), but not progression free survival (median 22.5 (95% CI 18.7-30.2) vs. 27.5 (95% CI, 25.8-30.5) months, p=0.1) We reported recurrent mutated genes in myeloma with mutations being present at both clonal and subclonal levels (IRF4, RB1, DIS3, BRAF, KRAS, and NRAS), whereas other genes were mutated only at clonal (HIST1H1E, LTB, TP53 or EGR1), or subclonal levels (CYLD, TRAF3, MAX). These results give insights about the differences in mutation acquisition times and potential subclonal fitness. We inferred that the median number of clones present in this myeloma series was 5, and determined the prognostic value of the number and diversity of subclones in MM patients. The prognostic impact of having high number of clones was unclear as no significant differences were found. On the contrary, there was a significant difference in terms of outcome when calculating distinct measurements of subclonal diversity. Briefly, MM patients with high values of inverse Simpson diversity index had a significantly poorer PFS (median 13.2 (95% CI, 9.4-∞) vs. 26.9 months (95% CI, 24-30.2) months, p=0.02) and OS (66% (95% CI, 52-82%) vs. 81% (95% CI, 77-85%) alive at 2-years, p=0.01); and, alternatively, MM patients who did not have a dominant subclone accounting for 〉 25% of MM cells (low values of Berger-Parker Dominance index, n=56) had a significantly shorter PFS than those with a dominant clone accounting for more than 25% of cells with a median of 22 (95% CI, 12.3-26.3) vs. 27.5 months (95% CI, 23.9-30.9) respectively, p=0.02. Our results show that mutational load and subclonal diversity are poor prognostic factors in myeloma. Previous studies from massive-parallel sequencing and single cell analyses of myeloma plasma cells already revealed that myeloma had the features of an evolutionary ecosystem, where different tumour subclones coexist and have differential response to treatment. We have demonstrated in this study that measures of tumor diversity have important clinical consequences. To our knowledge, this is the first time that the use of clonal diversity indices as predictive biomarkers of progression is proposed in haematological malignancies, and more specifically, myeloma. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 172-172
    Kurzfassung: Introduction Co-segregation of two or more adverse structural genetic aberrations in myeloma is associated with a particularly bad outcome and defines a molecular high risk subgroup of patients that is in urgent need of innovative treatment approaches (Boyd, Leukemia 2012). Interphase in situ fluorescence hybridization(iFISH) is the current clinical standard for detecting structural genetic aberrations in myeloma. However, iFISH is labor-intensive, slow and dependent on investigator expertise, which makes standardization difficult. There is an urgent need to develop a standardized and easily accessible all-molecular diagnostic test to enable the design of risk-stratified trials and, finally, risk-adapted precision medicine treatments for high risk patients. Material and Methods Bone marrow material from 1596 patients was received by a central laboratory for patients enrolled in the NCRI Myeloma XI trial (NCT01554852) at diagnosis from over 80 centers throughout the UK. Myeloma cells were purified to a purity of 〉 98% (median across samples) using an AutoMACS (Miltenyi Biotech) system and DNA and RNA were extracted using AllPrep columns (QIAGEN). Recurrent translocations were predicted by gene expression using a sensitive and specific TC-classification based multiplex qRT-PCR assay on a standard TaqMan (Life Technologies) real-time cycler (Kaiser et al., Leukemia 2013). Myeloma specific copy number alterations were assayed using the sensitive and specific multiplex ligation-dependent probe amplification assay (MLPA P425; MRC Holland; Alpar et al, Gen Chrom Cancer 2013) on a standard thermocycler and a standard ABI 3730 capillary electrophoresis Genetic Analyzer. Analysis of qRT-PCR and MLPA results was performed on a desktop computers using standard software without need for bioinformatics expertise or infrastructure. Results Translocation status was successfully analyzed for 1201 cases and copy number aberrations were successfully analyzed for 1232 cases. Matched translocation and copy number aberration data was available for 1044 cases. Genetic lesions associated with an adverse prognosis were detected with the following frequencies among the 1044 cases: t(4;14): 13%; t(14;16): 4%; t(14;20): 1%; del(1p32): 9%; gain(1q): 27%; amp(1q): 8%; del(17p): 9%. Non-high risk recurrent IGH translocations as well as copy number aberrations were assayed through both tests as well. Co-segregation analysis of all detected abnormalities using Fisher’s exact test, corrected for multiple testing, revealed co-occurrence more than expected by chance of the following lesions: t(4;14) and gain(1q): q=6.2x10-4; t(4;14) and amp(1q): q=2.1x10-7; del(1p32) and gain(1q): 1.1x10-3. Statistically significant co-occurrence was also observed for del(12p) and del(17p): q=2.1x10-5 as well as del(12p) and t(4;14): q=1.8x10-5. Survival data at the timepoint of analysis was available for 450 patients with a median follow-up of 25 months. Patients were classified as previously described (Boyd et al, Leukemia 2013) into molecular risk groups with standard risk defined by absence of adverse genetic lesions (n=224), intermediate risk with presence of one adverse genetic lesion (n=161) and high risk with presence of two adverse lesions (n=65). On Cox analysis, there was a significant difference in terms of PFS between these groups with a median PFS of 31.3 months (95% CI 28.5-35.2), 25.8 months (CI 22.1-27.6) and 16.2 months (CI 10.6-23.7) for groups with none, one, two or more genetic lesions, respectively. The 2-year OS was also significantly different between the groups with 84% (CI 79-89%) in standard risk, 78% (CI 71-85%) in intermediate risk and 65% (CI 53-78%) in high risk patients. Conclusion This all-molecular diagnostic approach for recurrent structural aberrations in myeloma offers a fast, robust and high throughput alternative to iFISH that can be run in any molecular diagnostic laboratory on standard equipment. The methods described here enable standardized and specific identification of a high risk subgroup of patients without the need for a bioinformatics infrastructure or expertise. The clinical applicability of this method makes it an ideal candidate method for prospective molecular risk-stratified clinical trials. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria. Savola:MRC-Holland: Employment.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz