Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cremer, Marta J.  (2)
  • Comparative Studies. Non-European Languages/Literatures  (2)
Type of Medium
Language
Years
FID
Subjects(RVK)
  • Comparative Studies. Non-European Languages/Literatures  (2)
RVK
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2014
    In:  The Journal of the Acoustical Society of America Vol. 136, No. 4_Supplement ( 2014-10-01), p. 2277-2277
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 136, No. 4_Supplement ( 2014-10-01), p. 2277-2277
    Abstract: Calculation of echolocation signals emission rate is necessary to estimate how many individuals are vocalizing, especially if passive acoustic density estimation methods are to be implemented. We calculated the individual emission rate of echolocation signals of franciscana dolphin. Fieldwork was between 22 and 31 January of 2014 at Babitonga Bay, Brazil. Acoustic data and group size were registered when animals were within visual range at maximum distance of 50 meters. We used a Cetacean Research™ hydrophone. The sound was digitized by Analogic/Digital IOtech, stored as wav-files and analyzed with Raven software. A band limited energy detector was set to automatically extract echolocation signals. The emission rate was calculated dividing the clicks registered for each file by the file duration and by the number of individuals in the group. We analyzed 240 min of sound of 36 groups. A total of 29,164 clicks were detected. The median individual click rate was 0.290 clicks/s (10th = 0.036 and 90th = 1.166 percentiles). The result is a general approximation of the individual echolocation signal emission rate. Sound production rates are potentially dependent on a number of factors, like season, group size, sex, or even density itself. [This study was supported by IWC/Australia, Petrobras, Fundo de Apoio à Pesquisa/UNIVILLE.]
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2014
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2021
    In:  The Journal of the Acoustical Society of America Vol. 150, No. 5 ( 2021-11-01), p. 3987-3998
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 150, No. 5 ( 2021-11-01), p. 3987-3998
    Abstract: Environmental and ecological factors can trigger changes in the acoustic repertoire of cetaceans. This study documents the first use of a well-established passive acoustic monitoring device (C-POD) to analyze echolocation sounds and behavior of franciscana dolphins in different habitats: estuary [Babitonga Bay (BB)] and open sea [Itapirubá Beach (IB)] . A total of 10 924 click trains were recorded in BB and 6 093 in IB. An inter-click interval  & lt; 10 ms (so called “feeding buzzes”) was used as a proxy for foraging activity. The main difference in the acoustic parameters between the two habitats was related to the frequency spectrum, with higher maximum and lower modal and minimum click frequencies in BB, and a train frequency range of 17 kHz, against 10 kHz in IB. Also, the click emission rate (clicks/s) was almost 20% higher in BB. Both studied habitats showed a high proportion of feeding buzzes (BB = 68%; IB = 58%), but with a higher probability of occurrence in BB (p  & lt; 0.001) and at night (p  & lt; 0.001) in both habitats. The C-PODs showed great potential to monitor occurrence, bioacoustics parameters, and echolocation behavior of franciscana dolphins. Longer-term temporal and spatial monitoring are necessary for elucidating several issues raised in this study.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2021
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages