Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Michaelis, Martin  (4)
  • Rothweiler, Florian  (4)
  • Schneider, Constanze  (4)
  • 1
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 7, No. 10 ( 2016-10-13), p. e2410-e2410
    Kurzfassung: Resistance formation after initial therapy response (acquired resistance) is common in high-risk neuroblastoma patients. YM155 is a drug candidate that was introduced as a survivin suppressant. This mechanism was later challenged, and DNA damage induction and Mcl-1 depletion were suggested instead. Here we investigated the efficacy and mechanism of action of YM155 in neuroblastoma cells with acquired drug resistance. The efficacy of YM155 was determined in neuroblastoma cell lines and their sublines with acquired resistance to clinically relevant drugs. Survivin levels, Mcl-1 levels, and DNA damage formation were determined in response to YM155. RNAi-mediated depletion of survivin, Mcl-1, and p53 was performed to investigate their roles during YM155 treatment. Clinical YM155 concentrations affected the viability of drug-resistant neuroblastoma cells through survivin depletion and p53 activation. MDM2 inhibitor-induced p53 activation further enhanced YM155 activity. Loss of p53 function generally affected anti-neuroblastoma approaches targeting survivin. Upregulation of ABCB1 (causes YM155 efflux) and downregulation of SLC35F2 (causes YM155 uptake) mediated YM155-specific resistance. YM155-adapted cells displayed increased ABCB1 levels, decreased SLC35F2 levels, and a p53 mutation. YM155-adapted neuroblastoma cells were also characterized by decreased sensitivity to RNAi-mediated survivin depletion, further confirming survivin as a critical YM155 target in neuroblastoma. In conclusion, YM155 targets survivin in neuroblastoma. Furthermore, survivin is a promising therapeutic target for p53 wild-type neuroblastomas after resistance acquisition (neuroblastomas are rarely p53-mutated), potentially in combination with p53 activators. In addition, we show that the adaptation of cancer cells to molecular-targeted anticancer drugs is an effective strategy to elucidate a drug’s mechanism of action.
    Materialart: Online-Ressource
    ISSN: 2041-4889
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2016
    ZDB Id: 2541626-1
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Experimental Results, Cambridge University Press (CUP), Vol. 1 ( 2020)
    Kurzfassung: Acquired MDM2 inhibitor resistance is commonly caused by loss-of-function TP53 mutations. In addition to the selection of TP53 -mutant cells by MDM2 inhibitors, MDM2 inhibitor-induced DNA damage may promote the formation of TP53 mutations. Here, we cultivated 12 sublines of the intrinsically MDM2 inhibitor-resistant TP53 wild-type acute myeloid leukaemia cell line PL21 for 52 passages in the presence of ineffective concentrations of the MDM2 inhibitor nutlin-3 but did not observe loss-of-function TP53 mutations. This suggests that MDM2 inhibitors select TP53 -mutant cells after mutations have occurred, but do not directly promote TP53 mutations. Unexpectedly, many sublines displayed increased sensitivity to the anti-cancer drugs cytarabine, doxorubicin, or gemcitabine. Consequently, therapies can affect the outcome of next-line treatments, even in the absence of a therapy response. This finding is conceptually novel. A better understanding of such processes will inform the design of improved therapy protocols in the future.
    Materialart: Online-Ressource
    ISSN: 2516-712X
    Sprache: Englisch
    Verlag: Cambridge University Press (CUP)
    Publikationsdatum: 2020
    ZDB Id: 3025002-X
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Journal of Experimental & Clinical Cancer Research, Springer Science and Business Media LLC, Vol. 40, No. 1 ( 2021-12)
    Kurzfassung: SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. Methods CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. Results Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. Conclusion Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.
    Materialart: Online-Ressource
    ISSN: 1756-9966
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2430698-8
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Communications Biology, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2020-06-24)
    Kurzfassung: The nucleoside analogue nelarabine, the prodrug of arabinosylguanine (AraG), is effective against T-cell acute lymphoblastic leukaemia (T-ALL) but not against B-cell ALL (B-ALL). The underlying mechanisms have remained elusive. Here, data from pharmacogenomics studies and a panel of ALL cell lines reveal an inverse correlation between nelarabine sensitivity and the expression of SAMHD1 , which can hydrolyse and inactivate triphosphorylated nucleoside analogues. Lower SAMHD1 abundance is detected in T-ALL than in B-ALL in cell lines and patient-derived leukaemic blasts. Mechanistically, T-ALL cells display increased SAMHD1 promoter methylation without increased global DNA methylation. SAMHD1 depletion sensitises B-ALL cells to AraG, while ectopic SAMHD1 expression in SAMHD1-null T-ALL cells induces AraG resistance. SAMHD1 has a larger impact on nelarabine/AraG than on cytarabine in ALL cells. Opposite effects are observed in acute myeloid leukaemia cells, indicating entity-specific differences. In conclusion, SAMHD1 promoter methylation and, in turn, SAMHD1 expression levels determine ALL cell response to nelarabine.
    Materialart: Online-Ressource
    ISSN: 2399-3642
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 2919698-X
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz