Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Gabbouj, Moncef  (3)
Type of Medium
Publisher
  • MDPI AG  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Remote Sensing Vol. 11, No. 11 ( 2019-06-04), p. 1340-
    In: Remote Sensing, MDPI AG, Vol. 11, No. 11 ( 2019-06-04), p. 1340-
    Abstract: Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst posing certain difficulties. For instance, traditional Machine Learning (ML) methods generally focus on finding more discriminative features to overcome the lack of information due to single- or dual-polarimetry. Beside conventional ML approaches, studies proposing deep convolutional neural networks (CNNs) come with limitations and drawbacks such as requirements of massive amounts of data for training and special hardware for implementing complex deep networks. In this study, we propose a systematic approach based on sliding-window classification with compact and adaptive CNNs that can overcome such drawbacks whilst achieving state-of-the-art performance levels for land use/land cover classification. The proposed approach voids the need for feature extraction and selection processes entirely, and perform classification directly over SAR intensity data. Furthermore, unlike deep CNNs, the proposed approach requires neither a dedicated hardware nor a large amount of data with ground-truth labels. The proposed systematic approach is designed to achieve maximum classification accuracy on single and dual-polarized intensity data with minimum human interaction. Moreover, due to its compact configuration, the proposed approach can process such small patches which is not possible with deep learning solutions. This ability significantly improves the details in segmentation masks. An extensive set of experiments over two benchmark SAR datasets confirms the superior classification performance and efficient computational complexity of the proposed approach compared to the competing methods.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Sensors, MDPI AG, Vol. 22, No. 2 ( 2022-01-06), p. 418-
    Abstract: Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and tainted with plausible breaches of privacy. This paper presents a privacy-preserving adaptive social distance estimation and crowd monitoring solution for camera surveillance systems. We develop a novel person localization strategy through pose estimation, build a privacy-preserving adaptive smoothing and tracking model to mitigate occlusions and noisy/missing measurements, compute inter-personal distances in the real-world coordinates, detect social distance infractions, and identify overcrowded regions in a scene. Performance evaluation is carried out by testing the system’s ability in person detection, localization, density estimation, anomaly recognition, and high-risk areas identification. We compare the proposed system to the latest techniques and examine the performance gain delivered by the localization and smoothing/tracking algorithms. Experimental results indicate a considerable improvement, across different metrics, when utilizing the developed system. In addition, they show its potential and functionality for applications other than social distancing.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2014
    In:  Remote Sensing Vol. 6, No. 6 ( 2014-05-27), p. 4801-4830
    In: Remote Sensing, MDPI AG, Vol. 6, No. 6 ( 2014-05-27), p. 4801-4830
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2014
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages