Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (7)
  • Platten, Michael  (7)
Type of Medium
Publisher
  • American Association for Cancer Research (AACR)  (7)
Language
Years
Subjects(RVK)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 2 ( 2022-01-15), p. 378-389
    Abstract: Gliomas are intrinsic brain tumors with a high degree of constitutive and acquired resistance to standard therapeutic modalities such as radiotherapy and alkylating chemotherapy. Glioma subtypes are recognized by characteristic mutations. Some of these characteristic mutations have shown to generate immunogenic neoepitopes suitable for targeted immunotherapy. Experimental Design: Using peptide-based ELISpot assays, we screened for potential recurrent glioma neoepitopes in MHC-humanized mice. Following vaccination, droplet-based single-cell T-cell receptor (TCR) sequencing from established T-cell lines was applied for neoepitope-specific TCR discovery. Efficacy of intraventricular TCR-transgenic T-cell therapy was assessed in a newly developed glioma model in MHC-humanized mice induced by CRISPR-based delivery of tumor suppressor–targeting guide RNAs. Results: We identify recurrent capicua transcriptional repressor (CIC) inactivating hotspot mutations at position 215 CICR215W/Q as immunogenic MHC class II (MHCII)-restricted neoepitopes. Vaccination of MHC-humanized mice resulted in the generation of robust MHCII-restricted mutation-specific T-cell responses against CICR215W/Q. Adoptive intraventricular transfer of CICR215W-specific TCR-transgenic T cells exert antitumor responses against CICR215W-expressing syngeneic gliomas. Conclusions: The integration of immunocompetent MHC-humanized orthotopic glioma models in the discovery of shared immunogenic glioma neoepitopes facilitates the identification and preclinical testing of human leukocyte antigen (HLA)-restricted neoepitope-specific TCRs for locoregional TCR-transgenic T-cell adoptive therapy.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 1 ( 2012-01-01), p. 105-117
    Abstract: Purpose: Recent work points out a role of B7H3, a member of the B7-family of costimulatory proteins, in conveying immunosuppression and enforced invasiveness in a variety of tumor entities. Glioblastoma is armed with effective immunosuppressive properties resulting in an impaired recognition and ineffective attack of tumor cells by the immune system. In addition, extensive and diffuse invasion of tumor cells into the surrounding brain tissue limits the efficacy of local therapies. Here, 4IgB7H3 is assessed as diagnostic and therapeutic target for glioblastoma. Experimental Design: To characterize B7H3 in glioblastoma, we conduct analyses not only in glioma cell lines and glioma-initiating cells but also in human glioma tissue specimens. Results: B7H3 expression by tumor and endothelial cells correlates with the grade of malignancy in gliomas and with poor survival. Both soluble 4IgB7H3 in the supernatant of glioma cells and cell-bound 4IgB7H3 are functional and suppress natural killer cell–mediated tumor cell lysis. Gene silencing showed that membrane and soluble 4IgB7H3 convey a proinvasive phenotype in glioma cells and glioma-initiating cells in vitro. These proinvasive and immunosuppressive properties were confirmed in vivo by xenografted 4IgB7H3 gene silenced glioma-initiating cells, which invaded significantly less into the surrounding brain tissue in an orthotopic model and by subcutaneously injected LN-229 cells, which were more susceptible to natural killer cell–mediated cytotoxicity than unsilenced control cells. Conclusions: Because of its immunosuppressive and proinvasive function, 4IgB7H3 may serve as a therapeutic target in the treatment of glioblastoma. Clin Cancer Res; 18(1); 105–17. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 16, No. 5 ( 2018-05-01), p. 767-776
    Abstract: CD95 (Fas/APO-1), a death receptor family member, activity has been linked to tumorigenicity in multiple cancers, including glioblastoma multiforme (GBM). A phase II clinical trial on relapsed glioblastoma patients demonstrated that targeted inhibition of CD95 signaling via the CD95 ligand (CD95L) binding and neutralizing Fc-fusion protein APG101 (asunercept) prolonged patient survival. Although CD95 signaling may be relevant for multiple aspects of tumor growth, the mechanism of action of APG101 in glioblastoma is not clear. APG101 action was examined by in vitro proliferation, apoptosis, and invasion assays with human and murine glioma and human microglial cells, as well as in vivo therapy studies with orthotopic gliomas and clinical data. APG101 inhibits CD95L-mediated invasion of glioma cells. APG101 treatment was effective in glioma-bearing mice, independently of the presence or absence of CD4 and CD8 T lymphocytes, which should be sensitive to CD95L. Combined with radiotherapy, APG101 demonstrated a reduction of tumor growth, fewer tumor satellites, reduced activity of matrix metalloproteinases (MMP) as well as prolonged survival of tumor-bearing mice compared with radiotherapy alone. Inhibiting rather than inducing CD95 activity is a break-of-paradigm therapeutic approach for malignant gliomas. Evidence, both in vitro and in vivo, is provided that CD95L-binding fusion protein treatment enhanced the efficacy of radiotherapy and reduced unwanted proinfiltrative effects by reducing metalloproteinase activity by directly affecting the tumor cells. Implications: APG101 (asunercept) successfully used in a controlled phase II glioblastoma trial (NCT01071837) acts anti-invasively by inhibiting matrix metalloproteinase signaling, resulting in additive effects together with radiotherapy and helping to further develop a treatment for this devastating disease. Mol Cancer Res; 16(5); 767–76. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 29, No. 19 ( 2023-10-02), p. 3892-3900
    Abstract: The EORTC-26101 study was a randomized phase II and III clinical trial of bevacizumab in combination with lomustine versus lomustine alone in progressive glioblastoma. Other than for progression-free survival (PFS), there was no benefit from addition of bevacizumab for overall survival (OS). However, molecular data allow for the rare opportunity to assess prognostic biomarkers from primary surgery for their impact in progressive glioblastoma. Experimental Design: We analyzed DNA methylation array data and panel sequencing from 170 genes of 380 tumor samples of the EORTC-26101 study. These patients were comparable with the overall study cohort in regard to baseline characteristics, study treatment, and survival. Results: Of patients' samples, 295/380 (78%) were classified into one of the main glioblastoma groups, receptor tyrosine kinase (RTK)1, RTK2 and mesenchymal. There were 10 patients (2.6%) with isocitrate dehydrogenase mutant tumors in the biomarker cohort. Patients with RTK1 and RTK2 classified tumors had lower median OS compared with mesenchymal (7.6 vs. 9.2 vs. 10.5 months). O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation was prognostic for PFS and OS. Neurofibromin (NF)1 mutations were predictive of response to bevacizumab treatment. Conclusions: Thorough molecular classification is important for brain tumor clinical trial inclusion and evaluation. MGMT promoter methylation and RTK1 classifier assignment were prognostic in progressive glioblastoma. NF1 mutation may be a predictive biomarker for bevacizumab treatment.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 7, No. 2_Supplement ( 2019-02-01), p. B075-B075
    Abstract: Immune checkpoint inhibitors are now implemented into the standard therapy of an increasing number of tumor entities and elicit remarkable durable therapy responses. However, gliomas seem resistant to checkpoint inhibition as recent evidence from a randomized clinical trial did not show a therapeutic benefit of PD-1 blockade in an unselected population of patients with recurrent glioblastoma. The blood-brain barrier per se does not seem to be a hurdle in transducing an effective peripheral immune response into tumors as evidenced by responses seen in selected glioma patients and patients with brain metastases treated with checkpoint inhibitors. This project investigates the mechanisms of response and resistance to checkpoint blockade targeting CTLA-4 and PD-1 in an experimental syngeneic Gl261 glioma model, where we found a clear and unanticipated dichotomy between responders and non-responders. We demonstrate that response to PD-1 and CTLA-4 blockade is driven by increased numbers and effector function of cytotoxic tumor-infiltrating T-cells as well as an enhanced TCRβ repertoire clonality of tumor infiltrating CD8 T-cells. Surprisingly, little overlap of the TCRβ repertoire between responder CD8 TILs was detected with only one shared TCRβ sequence motif, suggestive of a common tumor-antigen driving the expansion of reactive clones in responding mice. Moreover, we identified putative tumor neoepitopes that were predominantly abundant in non-responding tumors and thus might have undergone effective targeting by tumor-reactive T-cell in responding tumors. Resistance to PD-1 and CTLA-4 blockade was associated with increased frequencies of intratumoral macrophages (TAMs) expressing high levels of immunosuppressive markers such as PD-L1, CD38 and CD73. TAMs of nonresponding mice induced enhanced suppression of CD4 T-cell proliferation which was partially restored by PD-L1 blockade. Strikingly, additional PD-L1 blockade enhanced response rates to PD-1 and CTLA-4 blockade in Gl261-bearing mice, potentially by inhibiting the ligation of PD-L1 on TAMs to its alternative interaction partner CD80 on TILs. Collectively, we suggest a syngeneic mouse model for assessing mechanisms of response and resistance to checkpoint blockade in gliomas demonstrating a surprising heterogeneity of the TCRβ repertoire of tumor-infiltrating CD8 T-cells despite strict syngeneicity. We also provide evidence for a suppressive TAM subset associated with resistance to immune checkpoint inhibition in glioma, providing a rationale for combinatorial therapy strategies to overcome resistance to checkpoint blockade. Citation Format: Katrin Deumelandt, Jens Blobner, Jana K. Sonner, Mirco Friedrich, Edward Green, Michael O. Breckwoldt, Manuel Fischer, Jochen Meyer, Felix Sahm, Daniel Schrimpf, Andreas von Deimling, Michael Platten. Modeling response and resistance to immune checkpoint blockade in syngeneic mouse glioma [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr B075.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2732517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 11 ( 2013-06-01), p. 3225-3234
    Abstract: Quinolinic acid is a product of tryptophan degradation and may serve as a precursor for NAD+, an important enzymatic cofactor for enzymes such as the DNA repair protein PARP. Pathologic accumulation of quinolinic acid has been found in neurodegenerative disorders including Alzheimer and Huntington disease, where it is thought to be toxic for neurons by activating the N-methyl-D-aspartate (NMDA) receptor and inducing excitotoxicity. Although many tumors including gliomas constitutively catabolize tryptophan, it is unclear whether quinolinic acid is produced in gliomas and whether it is involved in tumor progression. Here, we show that quinolinic acid accumulated in human gliomas and was associated with a malignant phenotype. Quinolinic acid was produced by microglial cells, as expression of the quinolinic acid-producing enzyme 3-hydroxyanthranilate oxygenase (3-HAO) was confined to microglia in glioma tissue. Human malignant glioma cells, but not nonneoplastic astrocytes, expressed quinolinic acid phosphoribosyltransferase (QPRT) to use quinolinic acid for NAD+ synthesis and prevent apoptosis when de novo NAD+ synthesis was blocked. Oxidative stress, temozolomide, and irradiation induced QPRT in glioma cells. QPRT expression increased with malignancy. In recurrent glioblastomas after radiochemotherapy, QPRT expression was associated with a poor prognosis in two independent datasets. Our data indicate that neoplastic transformation in astrocytes is associated with a QPRT-mediated switch in NAD+ metabolism by exploiting microglia-derived quinolinic acid as an alternative source of replenishing intracellular NAD+ pools. The elevated levels of QPRT expression increase resistance to oxidative stress induced by radiochemotherapy, conferring a poorer prognosis. These findings have implications for therapeutic approaches inducing intracellular NAD+ depletion, such as alkylating agents or direct NAD+ synthesis inhibitors, and identify QPRT as a potential therapeutic target in malignant gliomas. Cancer Res; 73(11); 3225–34. ©2013 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 1 ( 2019-01-01), p. 253-265
    Abstract: Resistance is an obstacle of glioma therapy. Despite targeted interventions, tumors harbor primary resistance or become resistant over short course of treatment. This study examined the mouse double minute 2 (MDM2) inhibitor RG7388 together with radiotherapy and analyzed strategies to overcome acquired MDM2 inhibitor resistance in glioblastoma. Experimental Design: Effects of RG7388 and radiotherapy were analyzed in p53 wild-type glioblastoma cell lines and glioma-initiating cells. RG7388 resistant cells were generated by increasing RG7388 doses over 3 months. Regulated pathways were investigated by microarray, qRT-PCR, and immunoblot analysis and specifically inhibited to evaluate rational salvage therapies at RG7388 resistance. Effects of RG7388 and trametinib treatment were challenged in an orthotopical mouse model with RG7388 resistant U87MG glioblastoma cells. Results: MDM2 inhibition required functional p53 and showed synergistic activity with radiotherapy in first-line treatment. Long-term exposure to RG7388 induced resistance by activation of the extracellular signal-regulated kinases 1/2 (ERK1/2)–insulin growth factor binding protein 1 (IGFBP1) signaling cascade, which was specifically overcome by ERK1/2 pathway inhibition with trametinib and knockdown of IGFBP1. Combining trametinib with continued RG7388 treatment enhanced antitumor effects at RG7388 resistance in vitro and in vivo. Conclusions: These data provide a rationale for combining RG7388 and radiotherapy as first-line therapy with a specific relevance for tumors insensitive to alkylating standard chemotherapy and for the addition of trametinib to continued RG7388 treatment as salvage therapy after acquired resistance against RG7388 for clinical practice.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages