Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hoeflmayer, Doris  (3)
  • Wanek, Thomas  (3)
  • 1
    In: BMC Pharmacology, Springer Science and Business Media LLC, Vol. 10, No. S1 ( 2010-11)
    Type of Medium: Online Resource
    ISSN: 1471-2210
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2050437-8
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 17, No. 16 ( 2011-08-15), p. 5322-5332
    Abstract: Purpose: In this study, we tested the antitumor activity of the dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor BEZ235 against gastric cancer in vitro and in vivo. Experimental Design: Gastric cancer cell lines (N87, MKN45, and MKN28) were incubated with BEZ235 and assessed for cell viability, cell cycle, and PI3K/mTOR target inhibition. In vivo, athymic nude mice were inoculated with N87, MKN28, or MKN45 cells and treated daily with BEZ235. 3′-Deoxy-3′-[18F]fluorothymidine ([18F] FLT) uptake was measured via small animal positron emission tomography (PET). Results: In vitro, BEZ235 dose dependently decreased the cell viability of gastric cancer cell lines. The antiproliferative activity of BEZ235 was linked to a G1 cell-cycle arrest. In vivo, BEZ235 treatment resulted in PI3K/mTOR target inhibition as shown by dephosphorylation of AKT and S6 protein in all xenograft models. However, BEZ235 treatment only inhibited tumor growth of N87 xenografts, whereas no antitumor effect was observed in the MKN28 and MKN45 xenograft models. Sensitivity to BEZ235 in vivo correlated with downregulation of the proliferation marker thymidine kinase 1. Accordingly, [18F]FLT uptake was only significantly reduced in the BEZ235-sensitive N87 xenograft model as measured by PET. Conclusion: In conclusion, in vivo sensitivity of gastric cancer xenografts to BEZ235 did not correlate with in vitro antiproliferative activity or in vivo PI3K/mTOR target inhibition by BEZ235. In contrast, [18F]FLT uptake was linked to BEZ235 in vivo sensitivity. Noninvasive [18F] FLT PET imaging might qualify as a novel marker for optimizing future clinical testing of dual PI3K/mTOR inhibitors. Clin Cancer Res; 17(16); 5322–32. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 8_Supplement ( 2010-04-15), p. 4470-4470
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 4470-4470
    Abstract: Background Gastric cancer is still a major health problem and the prognosis at advanced stage of disease with the current chemotherapeutic treatment strategies remains poor. Therefore novel treatment strategies and molecular targets for gastric cancer therapy are desperately needed. PI3K/mTOR pathway mutations, especially PTEN, PI3K3C and AKT mutations and pS6 overexpression, frequently occur in gastric cancer. Thus, we tested the activity of the dual PI3K and mTOR BEZ235 against gastric cancer in vitro and in vivo. Materials and Methods Three gastric cancer cell lines (N87, Mkn28 and MKN45) were treated with BEZ235 (20-80nM) and assessed for cell viability, cell death and cell cycle via celltiter blue and FACS analysis, respectively. PI3K/mTOR protein target modulation was measured by Western blotting. For in vivo studies athymic nude mice were inoculated with N87 or Mkn45 cells bilaterally and treated daily with 20 or 40mg/kg BEZ235. Results In vitro, treatment of gastric cancer cells with 20-80nM BEZ235 decreased cell growth in a dose dependent manner in all cell lines tested (up to −70%). This anti-proliferative activity was accompanied with a G1 cell cycle arrest of gastric cancer cells (up to 75%), whereas no significant levels of cell death were detected. On the molecular level, BEZ235 therapy resulted in a decrease of phosphorylation of AKT and S6 protein at 80nM. Notably, lower concentrations abolished mTOR downstream signalling but had no effect on AKT phosphorylation. In vivo, treatment with 20 and 40mg/kg BEZ235 resulted in a significant anti-tumor effect in a N87 gastric cancer xenograft mouse model. Interestingly, BEZ235 therapy displayed no anti-tumor activity in the MKN45 gastric cancer xenograft mouse model. In both models, we observed similar results in terms of PI3K/mTOR pathway downregulation in xenografts. Conclusion BEZ235 has pronounced anti-tumor activity in gastric cancer cells at low nanomolar range, which is linked with PI3K/mTOR downregulation and G1 cell cycle arrest. In vivo, N87 gastric cancer cells responded to BEZ235 treatment, whereas MKN45 cells were resistant. Thus, in our models in vitro sensitivity of BEZ235 did not predict for in vivo activity. We are currently conducting a microPET mouse study in order to evaluate whether PET is a suitable tool to predict BEZ235 sensitivity in vivo and the results will be presented at the meeting. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 4470.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages