Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cold Spring Harbor Laboratory  (1)
  • Westermann, Alexander J.  (1)
Type of Medium
Publisher
  • Cold Spring Harbor Laboratory  (1)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2020
    In:  RNA Vol. 26, No. 8 ( 2020-08), p. 1069-1078
    In: RNA, Cold Spring Harbor Laboratory, Vol. 26, No. 8 ( 2020-08), p. 1069-1078
    Abstract: A major challenge for RNA-seq analysis of gene expression is to achieve sufficient coverage of informative nonribosomal transcripts. In eukaryotic samples, this is typically achieved by selective oligo(dT)-priming of messenger RNAs to exclude ribosomal RNA (rRNA) during cDNA synthesis. However, this strategy is not compatible with prokaryotes in which functional transcripts are generally not polyadenylated. To overcome this, we adopted DASH ( d epletion of a bundant s equences by h ybridization), initially developed for eukaryotic cells, to improve both the sensitivity and depth of bacterial RNA-seq. DASH uses the Cas9 nuclease to remove unwanted cDNA sequences prior to library amplification. We report the design, evaluation, and optimization of DASH experiments for standard bacterial short-read sequencing approaches, including software for automated guide RNA (gRNA) design for Cas9-mediated cleavage in bacterial rDNA sequences. Using these gRNA pools, we effectively removed rRNA reads (56%–86%) in RNA-seq libraries from two different model bacteria, the Gram-negative pathogen Salmonella enterica and the anaerobic gut commensal Bacteroides thetaiotaomicron . DASH works robustly, even with subnanogram amounts of input RNA. Its efficiency, high sensitivity, ease of implementation, and low cost (∼$5 per sample) render DASH an attractive alternative to rRNA removal protocols, in particular for material-constrained studies where conventional ribodepletion techniques fail.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2020
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages