Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Infectious Diseases, Oxford University Press (OUP), Vol. 74, No. 6 ( 2022-03-23), p. 1039-1046
    Abstract: Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. Methods In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. Results Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. Conclusions Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population.
    Type of Medium: Online Resource
    ISSN: 1058-4838 , 1537-6591
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2002229-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2007
    In:  Nucleic Acids Research Vol. 35, No. 3 ( 2007-2), p. 1018-1037
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 35, No. 3 ( 2007-2), p. 1018-1037
    Type of Medium: Online Resource
    ISSN: 1362-4962 , 0305-1048
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2007
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Nucleic Acids Research Vol. 49, No. 8 ( 2021-05-07), p. 4705-4724
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. 8 ( 2021-05-07), p. 4705-4724
    Abstract: Antisense peptide nucleic acids (PNAs) inhibiting mRNAs of essential genes provide a straight-forward way to repurpose our knowledge of bacterial regulatory RNAs for development of programmable species-specific antibiotics. While there is ample proof of PNA efficacy, their target selectivity and impact on bacterial physiology are poorly understood. Moreover, while antibacterial PNAs are typically designed to block mRNA translation, effects on target mRNA levels are not well-investigated. Here, we pioneer the use of global RNA-seq analysis to decipher PNA activity in a transcriptome-wide manner. We find that PNA-based antisense oligomer conjugates robustly decrease mRNA levels of the widely-used target gene, acpP, in Salmonella enterica, with limited off-target effects. Systematic analysis of several different PNA-carrier peptides attached not only shows different bactericidal efficiency, but also activation of stress pathways. In particular, KFF-, RXR- and Tat-PNA conjugates especially induce the PhoP/Q response, whereas the latter two additionally trigger several distinct pathways. We show that constitutive activation of the PhoP/Q response can lead to Tat-PNA resistance, illustrating the utility of RNA-seq for understanding PNA antibacterial activity. In sum, our study establishes an experimental framework for the design and assessment of PNA antimicrobials in the long-term quest to use these for precision editing of microbiota.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2024
    In:  Nucleic Acids Research Vol. 52, No. 7 ( 2024-04-24), p. 3950-3970
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 52, No. 7 ( 2024-04-24), p. 3950-3970
    Abstract: The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: microLife, Oxford University Press (OUP)
    Abstract: The introduction of high-throughput sequencing has resulted in a surge of available bacteriophage genomes, unveiling their tremendous genomic diversity. However, our current understanding of the complex transcriptional mechanisms that dictate their gene expression during infection is limited to a handful of model phages. Here, we applied ONT-cappable-seq to reveal the transcriptional architecture of six different clades of virulent phages infecting Pseudomonas aeruginosa. This long-read microbial transcriptomics approach is tailored to globally map transcription start and termination sites, transcription units and putative RNA-based regulators on dense phage genomes. Specifically, the full-length transcriptomes of LUZ19, LUZ24, 14–1, YuA, PAK_P3 and giant phage phiKZ during early, middle and late infection were collectively charted. Beyond pinpointing traditional promoter and terminator elements and transcription units, these transcriptional profiles provide insights in transcriptional attenuation and splicing events and allow straightforward validation of Group I intron activity. In addition, ONT-cappable-seq data can guide genome-wide discovery of novel regulatory element candidates, including non-coding RNAs and riboswitches. This work substantially expands the number of annotated phage-encoded transcriptional elements identified to date, shedding light on the intricate and diverse gene expression regulation mechanisms in Pseudomonas phages, which can ultimately be sourced as tools for biotechnological applications in phage and bacterial engineering.
    Type of Medium: Online Resource
    ISSN: 2633-6693
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 3054670-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  FEMS Microbiology Reviews Vol. 46, No. 5 ( 2022-09-02)
    In: FEMS Microbiology Reviews, Oxford University Press (OUP), Vol. 46, No. 5 ( 2022-09-02)
    Abstract: Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs—processed 3′ end fragments of mRNAs. Several such 3′ end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3′ end-derived sRNAs—their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3′ end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.
    Type of Medium: Online Resource
    ISSN: 1574-6976
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1500468-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Stem Cells Translational Medicine, Oxford University Press (OUP), Vol. 2, No. 1 ( 2013-01-01), p. 53-60
    Abstract: Advanced adult soft-tissue sarcomas (STSs) are rare tumors with a dismal prognosis and limited systemic treatment options. STSs may originate from mesenchymal stem cells (MSCs); the latter have mainly been isolated from adult bone marrow as plastic-adherent cells with differentiation capacity into mesenchymal tissues. Recently, a panel of antibodies has been established that allows for the prospective isolation of primary MSCs with high selectivity. Similar to cancer stem cells in other malignancies, sarcoma stem cells may bear immunophenotypic similarity with the corresponding precursor, that is, MSCs. We therefore set out to establish the expression pattern of MSC markers in sarcoma cell lines and primary tumor samples by flow cytometry. In addition, fibroblasts from different sources were examined. The results document a significant amount of MSC markers shared by sarcoma cells. The expression pattern includes uniformly expressed markers, as well as MSC markers that only stained subpopulations of sarcoma cells. Expression of W5C5, W8B2 (tissue nonspecific alkaline phosphatase [TNAP]), CD344 (frizzled-4), and CD271 marked subpopulations displaying increased proliferation potential. Moreover, CD271+ cells displayed in vitro doxorubicin resistance and an increased capacity to form spheres under serum-free conditions. Interestingly, another set of antigens, including the bona fide progenitor cell markers CD117 and CD133, were not expressed. Comparative expression patterns of novel MSC markers in sarcoma cells, as well as fibroblasts and MSCs, are presented. Our data suggest a hierarchical cytoarchitecture of the most common adult type sarcomas and introduce W5C5, TNAP, CD344, and CD271 as potential sarcoma progenitor cell markers.
    Type of Medium: Online Resource
    ISSN: 2157-6564 , 2157-6580
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 2642270-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 50, No. 7 ( 2022-04-22), p. 3985-3997
    Abstract: Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33–36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Rheumatology Vol. 62, No. SI ( 2023-02-06), p. SI107-SI113
    In: Rheumatology, Oxford University Press (OUP), Vol. 62, No. SI ( 2023-02-06), p. SI107-SI113
    Abstract: To assess the feasibility of reduced cyclophosphamide dosing in the setting of mobilization chemotherapy prior to high dose chemotherapy and autologous stem cell transplantation in patients with SSc. The primary end point was the occurrence of ‘poor mobilization’ when using different cyclophosphamide dosing. The second end point was to analyse potential risk factors for difficult stem cell mobilization in this cohort of patients with SSc. Methods This single-centre study retrospectively reviewed 32 patients with SSc who underwent autologous stem cell transplantation. We analysed the occurrence of ‘poor mobilization’ (defined as CD34+ progenitor cell count & lt;2 × 106/kg body weight, the use of increasing G-CSF dose, the use of plerixafor, or leukapheresis on & gt;2 consecutive days) in different cyclophosphamide mobilization regimens: We herein compared low dose (2 × 1–1.5 g/m2) cyclophosphamide vs high dose (2 × 2 g/m2) for mobilization. Results Higher dosing of cyclophosphamide seems not to be beneficial regarding stem cell collection as there was no significant difference in stem cell yield between high dose and reduced dose cyclophosphamide (6.2 vs 5.2 × 106/kg bodyweight after CD34+ enrichment). Furthermore, higher doses of cyclophosphamide might be associated with more side effects; this difference was, however, not statistically significant. Lower bodyweight and BMI (P  & lt; 0.001) as well as rituximab pre-therapy (P  & lt; 0.05) and cardiac involvement (P  & lt; 0.01) might negatively impact stem cell collection independently from the chosen regimen. Conclusion Our data demonstrate that a reduced cyclophosphamide mobilization regimen seems to be feasible. Risk factors for poor mobilization might be low bodyweight, prior rituximab therapy and cardiac involvement.
    Type of Medium: Online Resource
    ISSN: 1462-0324 , 1462-0332
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474143-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 3 ( 2023-03-01), p. 977-990
    Abstract: Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P & lt; 5 × 10−8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10−16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187–0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci ( & gt;90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10−4, OR = 2.5, 95%CI = 1.499–4.157) and DRB1*04:01 allele (P = 8.3 × 10−5, OR = 2.4, 95%CI = 1.548–3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages