Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (8)
  • Baveye, Philippe C.  (8)
  • Garnier, Patricia  (8)
  • 1
    In: Vadose Zone Journal, Wiley, Vol. 3, No. 1 ( 2004-02), p. 262-270
    Abstract: As a result of Cryptosporidium parvum in drinking water, several outbreaks of cryptosporidiosis have occurred in the last 10 yr. Although it is generally believed that movement of pathogens through the soil is minimal, recent research has shown that appreciable numbers of C. parvum oocysts may be transported via preferential or fingered flow to groundwater. The objective of the present research was to further investigate and model the transport of oocysts through preferential flow paths in the vadose zone under a “worst‐case” scenario. This was studied by adding calves feces containing C. parvum oocysts with a Cl − tracer to undisturbed silt loam columns and disturbed sand columns during a simulated steady‐state rain. The sand columns exhibited preferential flow in the form of fingers whereas macropore flow occurred in the undisturbed cores. In the columns with fingered flow, oocysts and Cl were transported rapidly with the same velocity through the columns. Although only 14 to 86% of the amount applied, the number of oocysts transported across the columns was several orders of magnitude above an infective dose. The macropore columns had only a very limited breakthrough of oocysts, which appeared several pore volumes after the Cl broke through initially. A simulation model for the transport of oocysts via preferential flow was developed on the basis of an existing preferential flow model for nonadsorbing solutes, with addition of a first‐order sink term for adsorbance of the C. parvum to the air–water–solid (AWS) interfaces, and with velocity and dispersivity parameters derived from Cl − transport. The breakthrough of C. parvum oocysts could be described realistically for the sand columns. However, the model could not describe oocyst transport in the columns with macropores.
    Type of Medium: Online Resource
    ISSN: 1539-1663 , 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2004
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Vadose Zone Journal, Wiley, Vol. 3, No. 1 ( 2004), p. 262-
    Type of Medium: Online Resource
    ISSN: 1539-1663
    Language: English
    Publisher: Wiley
    Publication Date: 2004
    detail.hit.zdb_id: 2088189-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  European Journal of Soil Science Vol. 72, No. 2 ( 2021-03), p. 510-526
    In: European Journal of Soil Science, Wiley, Vol. 72, No. 2 ( 2021-03), p. 510-526
    Abstract: Over the last decades, several authors have suggested that multifractal measures, that is, self‐similar measures defined on fractal or non‐fractal objects, could be useful to describe soil properties, to model soil processes, and to deal with their extreme microscale heterogeneity. In this context, a key question relates to the extent to which multifractal measures can indeed fulfill all the expectations they have generated. To address this question, we discuss the possibility of generating a synthetic soil image exhibiting multifractal porosity. To this end, a simple geometrical multifractal model in 2D is developed, which helps us to better understand the concept of multifractality and to generate images. We show that it is possible to generate synthetic binary images over a limited range of scales, but that a pure multifractal model for the distribution of the solid or pore mass cannot be developed due to physical constraints. Moreover, in the generated images mimicking multifractal solid space, a higher degree of multifractality corresponds to a larger porosity, rendering it difficult to tune model parameters to match actual soil properties. In addition, simple statistics relying on power‐law fits appear insufficient to characterize soil architecture even if they may capture some key multiscale indicators of observed spatial heterogeneity. We argue that the same conclusions would be reached in a three‐dimensional space, as well as for grey‐scales images.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: European Journal of Soil Science, Wiley, Vol. 73, No. 1 ( 2022-01)
    Abstract: The microscale physical characteristics of microbial habitats considerably affect the decomposition of organic matter in soils. One of the challenges is to identify microheterogeneities in soil that can explain the extent of carbon mineralization. The aim of this study was therefore to identify descriptors of μm‐scale soil heterogeneity that can explain CO 2 fluxes obtained at the mm scale. A suite of methods and models that visualize soil heterogeneity at scales relevant to microorganisms has been developed over the last decade. Among the existing 3D models that simulate microbial activity in soils, Mosaic is able to simulate, within a short computation time, the microbial degradation of organic matter at the microhabitat scale in soil using real 3D images of soil porosity. Our approach was to generate scenarios of carbon mineralization for various microscale environmental conditions and determine how the descriptors of soil structure could explain CO 2 evolution. First, we verified that the simulated diffusion of solutes in the soil samples obtained with Mosaic were the same as those obtained using the same parameter set from a robust 3D model based on a lattice Boltzmann approach. Then, we ran scenarios considering different soil pore architectures, water saturations and microorganism and organic matter placements. We found that the CO 2 emissions simulated for the different scenarios could be explained by the distance between microorganisms and organic matter, the diffusion of the substrate and the concentration of the available substrate. For some of the scenarios, we proposed a descriptor of accessibility based on the geodesic distance between microorganisms and organic matter weighted by the amount of organic matter. This microscale descriptor is correlated to the simulated CO 2 flux with a correlation coefficient of 0.69. Highlights Does the microscopic soil organisation explain the macroscopic mineralisation fluxes ? We present a new descriptor based on the geodesic distances between organic matter and microorganisms. We found a correlation between the descriptor of μm‐heterogeneity and the mineralization fluxes. Other scenarios should be carried out under wider environmental μm‐conditions to confirm our results.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: European Journal of Soil Science, Wiley, Vol. 73, No. 1 ( 2022-01)
    Abstract: Macroscopic models of soil organic matter (SOM) turnover have faced difficulties in reproducing SOM dynamics or in predicting the spatial distribution of carbon stocks. These models are based on a largely inadequate linear response of soil microorganisms to bulk concentrations of nutrients and it is clear that a new approach to SOM modelling is required. Introducing explicit microbial activity and organic matter (OM) reactivity in macroscopic models represents a challenge because of the fine spatial scales at which the processes occur. To get a better grasp on interactions that take place at the microscale, a new generation of SOM models have been developed at the spatial scale of the soil microenvironments where microorganisms evolve. These models are well adapted to challenge traditional hypotheses about the influence of soil architecture on soil microbial activity. Soil architecture provides the stage for a dynamic spatial accessibility of resources to microbes and the emergence of interactions between the actors in SOM decomposition. In this context, we review microscale models of microbial activity that have been designed for soils and soil analogues. To understand how these models account for spatial accessibility, we look in detail at how soil microenvironments are described in the different approaches and how microbial colonies are spatialized in these microenvironments. We present the advantages and disadvantages of the developed strategies and we discuss their limits. Highlights We review the state of the art in the development of microscale models of soil microbial processes. Microscale models have integrated the tremendous progress in knowledge of OM cycling in soils. We categorize modelling approaches by how they deal with complexity of soil architecture. Modelling benchmarks are required to properly balance complexity and data uncertainty.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: European Journal of Soil Science, Wiley, Vol. 74, No. 2 ( 2023-03)
    Abstract: Over the last decade, the ecosystem services (ESs) framework has been increasingly used to support mapping and assessment studies for sustainable land management purposes. Previous analysis of practical applications has revealed the significance of the spatial scale at which input data are obtained. This issue is particularly problematic with soil data that are often unavailable or available only at coarse scales or resolutions in various part of the world. In this context, four soil‐based ecosystem services, namely biomass provision, water provision, global climate regulation, and water quality regulation, are assessed using three conventional soil maps at the 1:1,000,000, 1:250,000 and 1:50,000 scales. The resulting individual and joint ES maps are then compared to examine the effects of changing the spatial scale of soil data on the ES levels and spatial patterns. ES levels are finally aggregated to landforms, land use, or administrative levels in order to try to identify the determinants of the sensitivity of ES levels to change in the scale of input soil data. Whereas the three soil maps turn out to be equally useful whenever ESs levels averaged over the whole 100 km 2 territory are needed, the maps at the 1:1,000,000 and 1:250,000 induced biases in the assessment of ESs levels over spatial units smaller than 100 and 10 km 2 , respectively. The simplification of the diversity and spatial distribution of soils at the two coarsest scales indeed resulted in local differences in ES levels ranging from several 10 to several 100%. Identification of the optimal representation of soil diversity and distribution to obtain a reliable representation of ESs spatial distribution is not straightforward. The ESs sensitivity to scale effect is indeed context‐specific, variable among individual ESs, and not directly or simply linked with the soil typological diversity represented in soil maps. Forested and natural lands in the study area appear particularly sensitive to soil data scales as they occupy marginal soils showing very specific ESs signatures.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: European Journal of Soil Science, Wiley, Vol. 73, No. 3 ( 2022-05)
    Abstract: Over the last decades, a new generation of microscale models has been developed to simulate soil microbial activity. An earlier article (Pot et al., 2021) presented a detailed review of the description of soil architecture and microbial dynamics in these models. In the present article, we summarise the main results obtained by these models according to six model outputs: growth and spatial organisation of microbial colonies, soil hydraulic conductivity, coexistence and trophic interactions of microorganisms, temporal dynamics of the amount of solid and dissolved organic matter in soil and, microbial production of CO 2 . For each of these outputs, we draw particular attention to the respective roles of soil architecture and microbial dynamics, and we report how microscale models allow for disentangling and quantifying them. We finally discuss limitations and future directions of microscale models in combination with the on‐going development of high‐performance imaging tools revealing the spatial heterogeneity of the actors of soil microbial activity. Highlights We review the insights on soil functions derived from microscale models of soil microbial processes. Microscale models disentangle the complex interactions between soil architecture and microbial dynamics. Spatial accessibility of resources to microbes, growth and ecological interactions are key factors in soil functions. Translation of knowledge of interactions at the microscopic scale into larger scales is still in its infancy.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Global Change Biology, Wiley, Vol. 25, No. 7 ( 2019-07), p. 2205-2208
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages