Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abe, Jun-ichi  (1)
  • Takeishi, Yasuchika  (1)
  • Medicine  (1)
Type of Medium
Person/Organisation
Language
Years
Subjects(RVK)
  • Medicine  (1)
RVK
  • 1
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 85, No. 12 ( 1999-12-03), p. 1164-1172
    Abstract: Abstract —Reactive oxygen species (ROS) activate members of the Src kinase and mitogen-activated protein kinase superfamily, including big mitogen-activated protein kinase 1 (BMK1) and extracellular signal-regulated kinases (ERK1/2). A potentially important downstream effector of ERK1/2 is p90 ribosomal S6 kinase (p90RSK), which plays an important role in cell growth through the activation of several transcription factors, as well as the Na + /H + exchanger. Previously, we showed that Src regulates BMK1 via a redox-sensitive signaling pathway. Because ROS are generated during ischemia and reperfusion after ischemia, we assessed the effects of these stimuli (H 2 O 2 , ischemia, and reperfusion) in the activation of ERK1/2, p90RSK, Src, and BMK1 in perfused guinea pig hearts. H 2 O 2 (100 μmol/L) significantly activated all kinases. Ischemia alone stimulated p90RSK, Src, and BMK1 but not ERK1/2. These results suggest that p90RSK activation through ischemia occurs via a pathway other than ERK1/2. A role of Src in ischemia-mediated BMK1 activation was demonstrated through inhibition with the Src inhibitor 4-amino-5-(4-chlorophenyl)-7-( t -butyl)pyrazolo[3,4- d ]pyrimidine. Reperfusion after ischemia stimulated both p90RSK and ERK1/2. In contrast, although ROS increase during reperfusion after ischemia, the activities of both BMK1 and its upstream regulator, Src, were markedly attenuated by reperfusion after ischemia. The activation of C-terminal Src kinase during ischemia but not during reperfusion suggests that the attenuation of Src and BMK1 activity by reperfusion was not regulated by C-terminal Src kinase activity. The antioxidant N -2-mercaptopropionylglycine completely inhibited ERK1/2 and p90RSK activation by reperfusion but only partially inhibited ischemia-induced Src and BMK1 activation. The present study is the first to show the coregulation of Src and BMK1 by reperfusion after ischemia, which we propose to occur via a novel, ROS-independent pathway.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1999
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages