Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 12, No. 10 ( 2020-05-14), p. 4016-
    Abstract: Yam (Dioscorea sp.) is an understudied tuber crop despite its importance for food security, income generation, culture, and health in West Africa. Traditional yam cropping practices in West Africa deliver low yields and lead to environmental degradation. In the context of a ‘research for development’ project, we developed and implemented a participatory and transdisciplinary research approach as a means to derive more sustainable yam production practices. We identified and studied different soil and plant management technologies adapted to varying biophysical and socio-economic contexts. For this purpose, we established innovation platforms (IPs) in four yam growing regions of West Africa, to validate the new technologies and to promote their adoption. These co-developed technologies were set up and tested first in researcher-managed plots before doing the same in farmer-managed plots. The new technologies resulted in a significant increase in yam productivity compared to conventional practices. The results discussed in the IPs gained interest from regional stakeholders and were shared through the media at local and national levels. Overall, this development-focused research approach showcases the relevance of purposeful stakeholder involvement to improve agricultural research outcomes.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nitrogen, MDPI AG, Vol. 3, No. 3 ( 2022-07-23), p. 426-443
    Abstract: Drained cultivated peatlands have been an essential agricultural resource for many years. To slow and reduce the degradation of these soils, which increases with drainage, the use of plant-based amendments (straw, wood chips, and biochar) has been proposed. Literature on the effects of such amendments in cultivated peatlands is scarce, and questions have been raised regarding the impact of this practice on nutrient cycling, particularly nitrogen (N) dynamics. By means of a six-month incubation experiment, this study assessed the effects of four plant-based amendments (biochar, a forest mix, willow, and miscanthus) on the release kinetics of water-soluble N pools (mineral and organic) in two histosols of differing degrees of decomposition (Haplosaprist and Haplohemist). The amendment rate was set at 15 Mg ha−1 on a dry weight basis. The N release kinetics were significantly impacted by soil type and amendment. Miscanthus and willow were the amendments that most reduced the release of soluble organic N (SON) and mineral N (minN). The addition of plant-based amendments reduced the total amount of released N pools during the incubation (cumulative N pools) by 50.3 to 355.2 mg kg−1, depending on the soil type, the N pool, and the type of amendment. A significant relationship was found between microbial biomass N, urease activity, and the cumulative N at the end of the incubation. The results showed that the input of plant-based amendments in cultivated peatland decreases N release, which could have a beneficial impact by decreasing N leaching; however, it could also restrict crop growth. Further research is needed to fully assess the impact of such amendments used in cultivated peatlands on N and on C fluxes at the soil–plant and soil–atmosphere interfaces to determine if they constitute a long-term solution for more sustainable agriculture.
    Type of Medium: Online Resource
    ISSN: 2504-3129
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2934684-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 12, No. 4 ( 2022-03-25), p. 792-
    Abstract: Yam (Dioscorea spp.) is a staple food crop and a source of income for millions of people in West Africa. Traditionally, in West Africa, yams are grown without any external inputs, leading to low tuber yields. The rapid decrease of tuber yield observed after the first yam cropping season has been ascribed to nutrient depletion and/or to the accumulation of yam-specific pests and diseases. This has led farmers to grow yam on new surfaces under fallow each year. Using a transdisciplinary approach, we identified different yam-based rotations and fertilization regimes that could stabilize yam production in rotational cropping systems and improve water yam (D. alata) productivity. These innovations were tested in researcher-managed field trials established along an environmental gradient crossing four yam growing zones spanning from the Humid Forest (Liliyo in Côte d’Ivoire) to the Derived Savanna/Forest Transition (Tiéningboué in Côte d’Ivoire), the Southern Guinean Savanna (Midebdo in Burkina Faso), and the Northern Guinean Savanna (Léo in Burkina Faso) between 2016 and 2018. The fertilization factor implemented at each site included a control with no fertilization (NON), sole mineral fertilization as NPK (MIN), combined organic and mineral fertilization (MINORG) and sole organic fertilization as manure (ORG), while the rotation factor included water yam in rotation with cereal (YamCer), legume (YamLeg), and white yam (YamYam). The average water yam tuber yields were 32.8, 20.3, 2.7, and 2.5 t fresh matter ha−1 in 2016, and 16.4, 10.7, 8.9, and 5.2 t fresh matter ha−1 in 2018 in Liliyo, Tiéningboué, Midebdo, and Léo, respectively. The most important determinants of tuber yields were the total amount of rainfall recorded during the yam growing period and between tuber initiation and maximum canopy development, and the soil carbon stocks in the 0–30-cm layer. We confirmed in this study that soil surface coverage measured between 70 and 98 days after planting was an early indicator of tuber yield. Fertilization impacted positively the soil surface cover but had a weak impact on tuber yields. Rotation had no impact on either the soil surface cover or tuber yields. This lack of observable impacts was partly due to the very large variability of tuber yields, to the variable rainfall, and to an anthracnose attack in two sites in 2018. The impacts of fertilization and rotation on yam yields should be studied over longer periods. This is, to our knowledge, the first publication showing the relative impacts of site-specific properties (rainfall and soil carbon stocks) versus management practices on water yam yield along an environmental gradient going across the West African yam belt.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Agronomy, MDPI AG, Vol. 11, No. 2 ( 2021-01-29), p. 249-
    Abstract: New management practices must be developed to improve yam productivity. By allowing non-destructive analyses of important plant traits, image-based phenotyping techniques could help developing such practices. Our objective was to determine the potential of image-based phenotyping methods to assess traits relevant for tuber yield formation in yam grown in the glasshouse and in the field. We took plant and leaf pictures with consumer cameras. We used the numbers of image pixels to derive the shoot biomass and the total leaf surface and calculated the ‘triangular greenness index’ (TGI) which is an indicator of the leaf chlorophyll content. Under glasshouse conditions, the number of pixels obtained from nadir view (view from the top) was positively correlated to shoot biomass, and total leaf surface, while the TGI was negatively correlated to the SPAD values and nitrogen (N) content of diagnostic leaves. Pictures taken from nadir view in the field showed an increase in soil surface cover and a decrease in TGI with time. TGI was negatively correlated to SPAD values measured on diagnostic leaves but was not correlated to leaf N content. In conclusion, these phenotyping techniques deliver relevant results but need to be further developed and validated for application in yam.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages