Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
  • Posselt, Derek J.  (3)
  • Geography  (3)
Type of Medium
Publisher
  • American Meteorological Society  (3)
Person/Organisation
Language
Years
Subjects(RVK)
  • Geography  (3)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 3 ( 2014-03-01), p. 1382-1382
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 3 ( 2014-03-01), p. 1382-1382
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Monthly Weather Review Vol. 140, No. 6 ( 2012-06-01), p. 1957-1974
    In: Monthly Weather Review, American Meteorological Society, Vol. 140, No. 6 ( 2012-06-01), p. 1957-1974
    Abstract: This paper explores the temporal evolution of cloud microphysical parameter uncertainty using an idealized 1D model of deep convection. Model parameter uncertainty is quantified using a Markov chain Monte Carlo (MCMC) algorithm. A new form of the ensemble transform Kalman smoother (ETKS) appropriate for the case where the number of ensemble members exceeds the number of observations is then used to obtain estimates of model uncertainty associated with variability in model physics parameters. Robustness of the parameter estimates and ensemble parameter distributions derived from ETKS is assessed via comparison with MCMC. Nonlinearity in the relationship between parameters and model output gives rise to a non-Gaussian posterior probability distribution for the parameters that exhibits skewness early and multimodality late in the simulation. The transition from unimodal to multimodal posterior probability density function (PDF) reflects the transition from convective to stratiform rainfall. ETKS-based estimates of the posterior mean are shown to be robust, as long as the posterior PDF has a single mode. Once multimodality manifests in the solution, the MCMC posterior parameter means and variances differ markedly from those from the ETKS. However, it is also shown that if the ETKS is given a multimode prior ensemble, multimodality is preserved in the ETKS posterior analysis. These results suggest that the primary limitation of the ETKS is not the inability to deal with multimodal, non-Gaussian priors. Rather it is the inability of the ETKS to represent posterior perturbations as nonlinear functions of prior perturbations that causes the most profound difference between MCMC posterior PDFs and ETKS posterior PDFs.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 4 ( 2014-04-01), p. 1631-1654
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 4 ( 2014-04-01), p. 1631-1654
    Abstract: If forecast or observation error distributions are non-Gaussian, the true posterior mean and covariance depends on the distribution of observation errors and the observed values. The posterior distribution of analysis errors obtained from ensemble Kalman filters and smoothers is independent of observed values. Hence, the error in ensemble Kalman smoother (EnKS) state estimates is closely linked to the sensitivity of the true posterior to observed values. Here a Markov chain Monte Carlo (MCMC) algorithm is used to document the dependence of the errors in EnKS-based estimates of cloud microphysical parameters on observed values. It is shown that EnKS analysis distributions are grossly inaccurate for nonnegative microphysical parameters when parameter values are close to zero. Furthermore, numerical analysis is presented that shows that, by design, the posterior distributions given by EnKS and even nonlinear extensions of these smoothers approximate the average of all possible posterior analysis distributions associated with all possible observations given the prior. Multiple runs of the MCMC are made to approximate this distribution. This empirically derived average of Bayesian posterior analysis errors is shown to be qualitatively similar to the EnKS posterior. In this way, it is demonstrated that, in the presence of nonlinearity, EnKS algorithms do not estimate the true posterior error distribution given the specific values of the observations. Instead, they produce an error distribution that is consistent with an average of the true posterior variance, weighted by the probability of obtaining each possible observation. This seemingly subtle distinction gives rise to fundamental differences between the approximate EnKS posterior and the true Bayesian posterior distribution.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages