Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
  • Whitaker, Jeffrey S.  (5)
  • Geography  (5)
Type of Medium
Publisher
  • American Meteorological Society  (5)
Language
Subjects(RVK)
  • Geography  (5)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Monthly Weather Review Vol. 135, No. 3 ( 2007-03-01), p. 1055-1076
    In: Monthly Weather Review, American Meteorological Society, Vol. 135, No. 3 ( 2007-03-01), p. 1055-1076
    Abstract: A hybrid ensemble transform Kalman filter (ETKF)–optimum interpolation (OI) analysis scheme is described and compared with an ensemble square root filter (EnSRF) analysis scheme. A two-layer primitive equation model was used under perfect-model assumptions. A simplified observation network was used, and the OI method utilized a static background error covariance constructed from a large inventory of historical forecast errors. The hybrid scheme updated the ensemble mean using a hybridized ensemble and static background-error covariance. The ensemble perturbations in the hybrid scheme were updated by the ETKF scheme. The EnSRF ran parallel data assimilation cycles for each member and serially assimilated the observations. The EnSRF background-error covariance was estimated fully from the ensemble. For 50-member ensembles, the analyses from the hybrid scheme were as accurate or nearly as accurate as those from the EnSRF, depending on the norm. For 20-member ensembles, the analyses from the hybrid scheme were more accurate than analyses from the EnSRF under certain norms. Both hybrid and EnSRF analyses were more accurate than the analyses from the OI. Further reducing the ensemble size to five members, the EnSRF exhibited filter divergence, whereas the analyses from the hybrid scheme were still better than those updated by the OI. Additionally, the hybrid scheme was less prone to spurious gravity wave activity than the EnSRF, especially when the ensemble size was small. Maximal growth in the ETKF ensemble perturbation space exceeded that in the EnSRF ensemble perturbation space. The relationship of the ETKF ensemble variance to the analysis error variance, a measure of a spread–skill relationship, was similar to that of the EnSRF ensemble. The hybrid scheme can be implemented in a reasonably straightforward manner in the operational variational frameworks, and the computational cost of the hybrid is expected to be much less than the EnSRF in the operational settings.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Monthly Weather Review Vol. 137, No. 10 ( 2009-10-01), p. 3219-3232
    In: Monthly Weather Review, American Meteorological Society, Vol. 137, No. 10 ( 2009-10-01), p. 3219-3232
    Abstract: A hybrid analysis scheme is compared with an ensemble square root filter (EnSRF) analysis scheme in the presence of model errors as a follow-up to a previous perfect-model comparison. In the hybrid scheme, the ensemble perturbations are updated by the ensemble transform Kalman filter (ETKF) and the ensemble mean is updated with a hybrid ensemble and static background-error covariance. The experiments were conducted with a two-layer primitive equation model. The true state was a T127 simulation. Data assimilation experiments were conducted at T31 resolution (3168 complex spectral coefficients), assimilating imperfect observations drawn from the T127 nature run. By design, the magnitude of the truncation error was large, which provided a test on the ability of both schemes to deal with model error. Additive noise was used to parameterize model errors in the background ensemble for both schemes. In the first set of experiments, additive noise was drawn from a large inventory of historical forecast errors; in the second set of experiments, additive noise was drawn from a large inventory of differences between forecasts and analyses. The static covariance was computed correspondingly from the two inventories. The hybrid analysis was statistically significantly more accurate than the EnSRF analysis. The improvement of the hybrid over the EnSRF was smaller when differences of forecasts and analyses were used to form the random noise and the static covariance. The EnSRF analysis was more sensitive to the size of the ensemble than the hybrid. A series of tests was conducted to understand why the EnSRF performed worse than the hybrid. It was shown that the inferior performance of the EnSRF was likely due to the sampling error in the estimation of the model-error covariance in the mean update and the less-balanced EnSRF initial conditions resulting from the extra localizations used in the EnSRF.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Monthly Weather Review Vol. 131, No. 7 ( 2003-07), p. 1485-1490
    In: Monthly Weather Review, American Meteorological Society, Vol. 131, No. 7 ( 2003-07), p. 1485-1490
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Monthly Weather Review Vol. 149, No. 3 ( 2021-03), p. 605-622
    In: Monthly Weather Review, American Meteorological Society, Vol. 149, No. 3 ( 2021-03), p. 605-622
    Abstract: A new multiscale, ensemble-based data assimilation (DA) method, multiscale local gain form ensemble transform Kalman filter (MLGETKF), is introduced. MLGETKF allows simultaneous update of multiple scales for both the ensemble mean and perturbations through assimilating all observations at once. MLGETKF performs DA in independent local volumes, which lends the algorithm a high degree of computational scalability. The multiscale analysis is enabled through the rapid creation of many pseudoensemble perturbations via a multiscale ensemble modulation procedure. The Kalman gain that is used to update the raw background ensemble mean and perturbations is based on this modulated ensemble, which intrinsically includes multiscale model space localization. Experiments with a noncycled statistical model show that the full background covariance estimated by MLGETKF more accurately resembles the shape of the true covariance than a scale-unaware localization. The mean analysis from the best-performing MLGETKF is statistically significantly more accurate than the best-performing scale-unaware LGETKF. The accuracy of the MLGETKF analysis is more sensitive to small-scale band localization radius than large-scale band. MLGETKF is further examined in a cycling DA context with a surface quasigeostrophic model. The root-mean-square potential temperature analysis error of the best-performing MLGETKF is 17.2% lower than that of the best-performing LGETKF. MLGETKF reduces analysis errors measured in kinetic energy spectra space by 30%–80% relative to LGETKF with the largest improvement at large scales. MLGETKF deterministic and ensemble mean forecasts are more accurate than LGETKF for full and large scales up to 5–6-day lead time and for small scales up to 3–4-day lead time, gaining ~12 h–1 day of predictability.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 11 ( 2017-11), p. 4575-4592
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 11 ( 2017-11), p. 4575-4592
    Abstract: To ameliorate suboptimality in ensemble data assimilation, methods have been introduced that involve expanding the ensemble size. Such expansions can incorporate model space covariance localization and/or estimates of climatological or model error covariances. Model space covariance localization in the vertical overcomes problematic aspects of ensemble-based satellite data assimilation. In the case of the ensemble transform Kalman filter (ETKF), the expanded ensemble size associated with vertical covariance localization would also enable the simultaneous update of entire vertical columns of model variables from hyperspectral and multispectral satellite sounders. However, if the original formulation of the ETKF were applied to an expanded ensemble, it would produce an analysis ensemble that was the same size as the expanded forecast ensemble. This article describes a variation on the ETKF called the gain ETKF (GETKF) that takes advantage of covariances from the expanded ensemble, while producing an analysis ensemble that has the required size of the unexpanded forecast ensemble. The approach also yields an inflation factor that depends on the localization length scale that causes the GETKF to perform differently to an ensemble square root filter (EnSRF) using the same expanded ensemble. Experimentation described herein shows that the GETKF outperforms a range of alternative ETKF-based solutions to the aforementioned problems. In cycling data assimilation experiments with a newly developed storm-track version of the Lorenz-96 model, the GETKF analysis root-mean-square error (RMSE) matches the EnSRF RMSE at shorter than optimal localization length scales but is superior in that it yields smaller RMSEs for longer localization length scales.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages