Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (43)
  • Geography  (43)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Monthly Weather Review Vol. 148, No. 2 ( 2020-02-01), p. 637-654
    In: Monthly Weather Review, American Meteorological Society, Vol. 148, No. 2 ( 2020-02-01), p. 637-654
    Abstract: Coupled data assimilation (DA) provides a consistent framework for assimilating satellite observations that are sensitive to several components of the Earth system. In this paper, we focus on low-peaking infrared satellite channels that are sensitive to the lower atmosphere and Earth surface temperature (EST) over both ocean and land. Our atmospheric hybrid-4DVAR system [the Navy Global Environmental Model (NAVGEM)] is extended to include the following: 1) variability in the sea surface temperature (both diurnal variability and climatological perturbations to the ensemble members), 2) the coupled Jacobians of the radiative transfer model for the infrared sensors, and 3) the coupled covariances between the EST and the atmosphere. Our coupling approach is found to improve forecast accuracy and to provide corrections to the EST that are in balance with the atmospheric analysis. The largest impact of the coupling is found on near-surface atmospheric temperature and humidity in the tropics, but the impact extends all the way to the stratosphere. The role of each coupling element on the performance of the global atmospheric circulation model is investigated. Inclusion of variability in the sea surface temperature has the strongest positive impact on the forecast quality. Additional inclusion of the coupled Jacobian and ensemble-based coupled covariances led to further improvements in scores and to modification of the corrections to the ocean boundary layer. Coupled DA had significant impact on latent and sensible heat fluxes over land, locations of western boundary currents, and along the ice edge.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Monthly Weather Review Vol. 142, No. 3 ( 2014-03-01), p. 1382-1382
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 3 ( 2014-03-01), p. 1382-1382
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 2 ( 2017-02), p. 653-667
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 2 ( 2017-02), p. 653-667
    Abstract: Data assimilation schemes combine observational data with a short-term model forecast to produce an analysis. However, many characteristics of the atmospheric states described by the observations and the model differ. Observations often measure a higher-resolution state than coarse-resolution model grids can describe. Hence, the observations may measure aspects of gradients or unresolved eddies that are poorly resolved by the filtered version of reality represented by the model. This inconsistency, known as observation representation error, must be accounted for in data assimilation schemes. In this paper the ability of the ensemble to predict the variance of the observation error of representation is explored, arguing that the portion of representation error being detected by the ensemble variance is that portion correlated to the smoothed features that the coarse-resolution forecast model is able to predict. This predictive relationship is explored using differences between model states and their spectrally truncated form, as well as commonly used statistical methods to estimate observation error variances. It is demonstrated that the ensemble variance is a useful predictor of the observation error variance of representation and that it could be used to account for flow dependence in the observation error covariance matrix.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Monthly Weather Review Vol. 139, No. 9 ( 2011-09), p. 3036-3051
    In: Monthly Weather Review, American Meteorological Society, Vol. 139, No. 9 ( 2011-09), p. 3036-3051
    Abstract: This paper investigates the effects of spatial filtering on the ensemble-based estimate of the background error covariance matrix in an ensemble-based Kalman filter (EnKF). In particular, a novel kernel smoothing method with variable bandwidth is introduced and its performance is compared to that of the widely used Gaspari–Cohn filter, which uses a fifth-order kernel function with a fixed localization length. Numerical experiments are carried out with the 40-variable Lorenz-96 model. The results of the experiments show that the nonparametric approach provides a more accurate estimate of the background error covariance matrix than the Gaspari–Cohn filter with any localization length. It is also shown that the Gaspari–Cohn filter tends to provide more accurate estimates of the covariance with shorter localization lengths. However, the analyses obtained by using longer localization lengths tend to be more accurate than those produced by using short localization lengths or the nonparametric approach. This seemingly paradoxical result is explained by showing that localization with longer localization lengths produces filtered estimates whose time mean is the most similar to the time mean of both the unfiltered estimate and the true covariance. This result suggests that a better metric of covariance filtering skill would be one that combined a measure of closeness to the sample covariance matrix for a very large ensemble with a measure of similarity between the climatological averages of the filtered and sample covariance.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Monthly Weather Review Vol. 137, No. 1 ( 2009-01-01), p. 288-298
    In: Monthly Weather Review, American Meteorological Society, Vol. 137, No. 1 ( 2009-01-01), p. 288-298
    Abstract: A computationally inexpensive ensemble transform (ET) method for generating high-resolution initial perturbations for regional ensemble forecasts is introduced. The method provides initial perturbations that (i) have an initial variance consistent with the best available estimates of initial condition error variance, (ii) are dynamically conditioned by a process similar to that used in the breeding technique, (iii) add to zero at the initial time, (iv) are quasi-orthogonal and equally likely, and (v) partially respect mesoscale balance constraints by ensuring that each initial perturbation is a linear sum of forecast perturbations from the preceding forecast. The technique is tested using estimates of analysis error variance from the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) and the Navy’s regional Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) over a 3-week period during the summer of 2005. Lateral boundary conditions are provided by a global ET ensemble. The tests show that the ET regional ensemble has a skillful mean and a useful spread–skill relationship in mass, momentum, and precipitation variables. Diagnostics indicate that ensemble variance was close to, but probably a little less than, the forecast error variance for wind and temperature variables, while precipitation ensemble variance was significantly smaller than precipitation forecast error variance.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Monthly Weather Review Vol. 136, No. 3 ( 2008-03-01), p. 1093-1108
    In: Monthly Weather Review, American Meteorological Society, Vol. 136, No. 3 ( 2008-03-01), p. 1093-1108
    Abstract: The ensemble transform (ET) scheme changes forecast perturbations into analysis perturbations whose amplitudes and directions are consistent with a user-provided estimate of analysis error covariance. A practical demonstration of the ET scheme was undertaken using Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) analysis error variance estimates and the Navy Operational Global Atmospheric Prediction System (NOGAPS) numerical weather prediction (NWP) model. It was found that the ET scheme produced forecast ensembles that were comparable to or better in a variety of measures than those produced by the Fleet Numerical and Oceanography Center (FNMOC) bred-growing modes (BGM) scheme. Also, the demonstration showed that the introduction of stochastic perturbations into the ET forecast ensembles led to a substantial improvement in the agreement between the ET and NAVDAS analysis error variances. This finding is strong evidence that even a small-sized ET ensemble is capable of obtaining good agreement between the ET and NAVDAS analysis error variances, provided that NWP model deficiencies are accounted for. Last, since the NAVDAS analysis error covariance estimate is diagonal and hence ignores multivariate correlations, it was of interest to examine the ET analysis perturbations’ spatial correlation. Tests showed that the ET analysis perturbations exhibited statistically significant, realistic multivariate correlations.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Monthly Weather Review Vol. 140, No. 6 ( 2012-06-01), p. 1957-1974
    In: Monthly Weather Review, American Meteorological Society, Vol. 140, No. 6 ( 2012-06-01), p. 1957-1974
    Abstract: This paper explores the temporal evolution of cloud microphysical parameter uncertainty using an idealized 1D model of deep convection. Model parameter uncertainty is quantified using a Markov chain Monte Carlo (MCMC) algorithm. A new form of the ensemble transform Kalman smoother (ETKS) appropriate for the case where the number of ensemble members exceeds the number of observations is then used to obtain estimates of model uncertainty associated with variability in model physics parameters. Robustness of the parameter estimates and ensemble parameter distributions derived from ETKS is assessed via comparison with MCMC. Nonlinearity in the relationship between parameters and model output gives rise to a non-Gaussian posterior probability distribution for the parameters that exhibits skewness early and multimodality late in the simulation. The transition from unimodal to multimodal posterior probability density function (PDF) reflects the transition from convective to stratiform rainfall. ETKS-based estimates of the posterior mean are shown to be robust, as long as the posterior PDF has a single mode. Once multimodality manifests in the solution, the MCMC posterior parameter means and variances differ markedly from those from the ETKS. However, it is also shown that if the ETKS is given a multimode prior ensemble, multimodality is preserved in the ETKS posterior analysis. These results suggest that the primary limitation of the ETKS is not the inability to deal with multimodal, non-Gaussian priors. Rather it is the inability of the ETKS to represent posterior perturbations as nonlinear functions of prior perturbations that causes the most profound difference between MCMC posterior PDFs and ETKS posterior PDFs.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Monthly Weather Review Vol. 143, No. 12 ( 2015-12-01), p. 4785-4804
    In: Monthly Weather Review, American Meteorological Society, Vol. 143, No. 12 ( 2015-12-01), p. 4785-4804
    Abstract: The statistics of model temporal variability ought to be the same as those of the filtered version of reality that the model is designed to represent. Here, simple diagnostics are introduced to quantify temporal variability on different time scales and are then applied to NCEP and CMC global ensemble forecasting systems. These diagnostics enable comparison of temporal variability in forecasts with temporal variability in the initial states from which the forecasts are produced. They also allow for an examination of how day-to-day variability in the forecast model changes as forecast integration time increases. Because the error in subsequent analyses will differ, it is shown that forecast temporal variability should lie between corresponding analysis variability and analysis variability minus 2 times the analysis error variance. This expectation is not always met and possible causes are discussed. The day-to-day variability in NCEP forecasts steadily decreases at a slow rate as forecast time increases. In contrast, temporal variability increases during the first few days in the CMC control forecasts, and then levels off, consistent with a spinup of the forecasts starting from overly smoothed analyses. The diagnostics successfully reflect a reduction in the temporal variability of the CMC perturbed forecasts after a system upgrade. The diagnostics also illustrate a shift in variability maxima from storm-track regions for 1-day variability to blocking regions for 10-day variability. While these patterns are consistent with previous studies examining temporal variability on different time scales, they have the advantage of being obtainable without the need for extended (e.g., multimonth) forecast integrations.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Monthly Weather Review Vol. 139, No. 2 ( 2011-02-01), p. 573-580
    In: Monthly Weather Review, American Meteorological Society, Vol. 139, No. 2 ( 2011-02-01), p. 573-580
    Abstract: Previous descriptions of how localized ensemble covariances can be incorporated into variational (VAR) data assimilation (DA) schemes provide few clues as to how this might be done in an efficient way. This article serves to remedy this hiatus in the literature by deriving a computationally efficient algorithm for using nonadaptively localized four-dimensional (4D) or three-dimensional (3D) ensemble covariances in variational DA. The algorithm provides computational advantages whenever (i) the localization function is a separable product of a function of the horizontal coordinate and a function of the vertical coordinate, (ii) and/or the localization length scale is much larger than the model grid spacing, (iii) and/or there are many variable types associated with each grid point, (iv) and/or 4D ensemble covariances are employed.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Monthly Weather Review Vol. 139, No. 4 ( 2011-04-01), p. 1241-1255
    In: Monthly Weather Review, American Meteorological Society, Vol. 139, No. 4 ( 2011-04-01), p. 1241-1255
    Abstract: An adaptive ensemble covariance localization technique, previously used in “local” forms of the ensemble Kalman filter, is extended to a global ensemble four-dimensional variational data assimilation (4D-VAR) scheme. The purely adaptive part of the localization matrix considered is given by the element-wise square of the correlation matrix of a smoothed ensemble of streamfunction perturbations. It is found that these purely adaptive localization functions have spurious far-field correlations as large as 0.1 with a 128-member ensemble. To attenuate the spurious features of the purely adaptive localization functions, the authors multiply the adaptive localization functions with very broadscale nonadaptive localization functions. Using the Navy’s operational ensemble forecasting system, it is shown that the covariance localization functions obtained by this approach adapt to spatially anisotropic aspects of the flow, move with the flow, and are free of far-field spurious correlations. The scheme is made computationally feasible by (i) a method for inexpensively generating the square root of an adaptively localized global four-dimensional error covariance model in terms of products or modulations of smoothed ensemble perturbations with themselves and with raw ensemble perturbations, and (ii) utilizing algorithms that speed ensemble covariance localization when localization functions are separable, variable-type independent, and/or large scale. In spite of the apparently useful characteristics of adaptive localization, single analysis/forecast experiments assimilating 583 200 observations over both 6- and 12-h data assimilation windows failed to identify any significant difference in the quality of the analyses and forecasts obtained using nonadaptive localization from that obtained using adaptive localization.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages