Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (10)
  • Ramaswamy, Vijay  (10)
Type of Medium
Publisher
  • American Association for Cancer Research (AACR)  (10)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 16 ( 2016-08-15), p. 4708-4719
    Abstract: Proliferating cancer cells are characterized by high rates of glycolysis, lactate production, and altered mitochondrial metabolism. This metabolic reprogramming provides important metabolites for proliferation of tumor cells, including glioblastoma. These biological processes, however, generate oxidative stress that must be balanced through detoxification of reactive oxygen species (ROS). Using an unbiased retroviral loss-of-function screen in nontransformed human astrocytes, we demonstrate that mitochondrial PTEN-induced kinase 1 (PINK1) is a regulator of the Warburg effect and negative regulator of glioblastoma growth. We report that loss of PINK1 contributes to the Warburg effect through ROS-dependent stabilization of hypoxia-inducible factor-1A and reduced pyruvate kinase muscle isozyme 2 activity, both key regulators of aerobic glycolysis. Mechanistically, PINK1 suppresses ROS and tumor growth through FOXO3a, a master regulator of oxidative stress and superoxide dismutase 2. These findings highlight the importance of PINK1 and ROS balance in normal and tumor cells. PINK1 loss was observed in a significant number of human brain tumors including glioblastoma (n & gt; 900) and correlated with poor patient survival. PINK1 overexpression attenuates in vivo glioblastoma growth in orthotopic mouse xenograft models and a transgenic glioblastoma model in Drosophila. Cancer Res; 76(16); 4708–19. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Clinical Cancer Research Vol. 28, No. 19 ( 2022-10-03), p. 4161-4163
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 19 ( 2022-10-03), p. 4161-4163
    Abstract: Survival rates for average-risk medulloblastoma exceed 80%; however, long-term sequelae are substantial. A study from Mumbai, India evaluated the role of omission of craniospinal irradiation. Albeit unsuccessful, this study raises the crucial question of how low therapy can be safely de-escalated with the intent of improving quality of survival. See related article by Gupta et al., p. 4180
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2014
    In:  Cancer Research Vol. 74, No. 19_Supplement ( 2014-10-01), p. 996-996
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 996-996
    Abstract: Tumor recurrence is the main cause of death in children with medulloblastoma (MB). MYCN is a marker for poor prognosis which is amplified in SHH and Group 4 but rarely in WNT and Group 3 subgroups of MB. The exact mechanisms for MB relapse are not known but recent findings (Ramaswamy et al. Lancet Oncol., 2013) suggest temporal differences within the four MB subgroups. For instance, SHH tumors recur locally while SHH-independent Group 4 tumors develop distant metastases. In order to study these processes further, we used a previously described transgenic mouse model of MYCN-driven SHH-independent MB (GTML mouse) to recreate the metastatic recurrence of such brain tumors in vivo. We previously showed that the expression of SOX9 transcription factor correlates well with SHH tumors and that only a few scattered SOX9-positive cells are found in SHH-independent GTML tumors similarly to Group 4 human MB. By using a combination of Tet-ON and Tet-OFF inducible systems we managed to target this rare population of SOX9-positive GTML tumor cells in vivo. These cells were able to form a distant recurrence after the tumor bulk in the mice was removed by using dox-inducible oncogene depletion. These relapses showed similar morphology and immunoreactivity of defined MB markers but presented generally higher levels of SOX9 compared to the primary GTML tumors. Additionally, we overexpressed SOX9 in cerebellar stem cells transfected with a mutationally stabilized MYCNT58A and injected them back into the cerebellum of adult mice. Surprisingly, the MB-like tumors that formed migrated and developed in the forebrain in contrast to the cerebellar tumors induced by the same cells transfected with MYCNT58A only. These findings suggest that increased levels of SOX9 drives migration of MYCN-driven MB cells. A similar correlation was found in Group 4 MB patients where isolated metastases had consistently higher SOX9 levels as compared to the corresponding primary tumor. Significance: We have developed a new mouse model for MB recurrence. We show how a rare population of SOX9-positive cells in SHH-independent MB is capable of initiating recurrence after primary tumor removal. The relapsed MB has similar characteristics to the initial tumor but develops at a distant site in the brain, in line with recent data from human tumors. Further characterization of cells with such properties will help to improve our understanding of the mechanisms behind metastatic MB recurrence and to develop treatments against those migrating cell populations. Citation Format: Vasil Savov, Grammatiki Fotaki, Marc Remke, Adrian M. Dubuc, Vijay Ramaswamy, Matko Cancer, Holger Weishaupt, Michael D. Taylor, Fredrik J. Swartling. Metastasis and tumor recurrence from rare SOX9-positive cells in Group 4 medulloblastoma. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 996. doi:10.1158/1538-7445.AM2014-996
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 1 ( 2015-01-01), p. 134-146
    Abstract: Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)–driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood–brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma. Cancer Res; 75(1); 134–46. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 16 ( 2015-08-15), p. 3750-3758
    Abstract: Purpose: Myxopapillary ependymoma (MPE) is a distinct histologic variant of ependymoma arising commonly in the spinal cord. Despite an overall favorable prognosis, distant metastases, subarachnoid dissemination, and late recurrences have been reported. Currently, the only effective treatment for MPE is gross-total resection. We characterized the genomic and transcriptional landscape of spinal ependymomas in an effort to delineate the genetic basis of this disease and identify new leads for therapy. Experimental Design: Gene expression profiling was performed on 35 spinal ependymomas, and copy number profiling was done on an overlapping cohort of 46 spinal ependymomas. Functional validation experiments were performed on tumor lysates consisting of assays measuring pyruvate kinase M activity (PKM), hexokinase activity (HK), and lactate production. Results: At a gene expression level, we demonstrate that spinal grade II and MPE are molecularly and biologically distinct. These are supported by specific copy number alterations occurring in each histologic variant. Pathway analysis revealed that MPE are characterized by increased cellular metabolism, associated with upregulation of HIF1α. These findings were validated by Western blot analysis demonstrating increased protein expression of HIF1α, HK2, PDK1, and phosphorylation of PDHE1A. Functional assays were performed on MPE lysates, which demonstrated decreased PKM activity, increased HK activity, and elevated lactate production. Conclusions: Our findings suggest that MPE may be driven by a Warburg metabolic phenotype. The key enzymes promoting the Warburg phenotype: HK2, PKM2, and PDK are targetable by small-molecule inhibitors/activators, and should be considered for evaluation in future clinical trials for MPE. Clin Cancer Res; 21(16); 3750–8. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 5050-5050
    Abstract: Medulloblastoma comprises the most common malignant brain tumor in children. Non-WNT/SHH tumors define the most refractory medulloblastoma subgroups. Interestingly, 17q gain, the most common genetic aberration in medulloblastoma, comprises a cytogenetic hallmark of these molecular high-risk tumors detected in group 3 (62%), and group 4 (73%). The majority of recurrent tumors harbor 17q gain in the corresponding primary. Virtually all of these tumors develop resistance to current treatment protocols at relapse. The lack of a common molecular target hampers the development of urgently needed novel treatment strategies. Through mRNA expression profiling of 64 primary tumor samples, we identified potassium inwardly-rectifying channel J2 (KCNJ2) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. High KCNJ2 transcript levels were significantly associated with non-WNT/non-SHH grouping, anaplastic histology, metastatic dissemination, and poor clinical outcome. KCNJ2 protein expression was analyzed by immunohistochemistry in a large cohort of patients (n=199), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior prognosis (p & lt;0.0001). To functionally validate the potential role of KCNJ2 in medulloblastoma biology, we performed knockdown experiments by small interfering RNA-mediated silencing in two well-characterized medulloblastoma cell lines. Transient knockdown of KCNJ2 resulted in a reduced proliferation rate and induction of apoptosis. Furthermore, treatment of the medulloblastoma cell lines and medulloblastoma stem cells with amiodarone and gambogic acid, two inhibitors of this class of Kir channels, phenocopied these effects in a time- and dose-dependent manner. Whole cell patch clamp results revealed a nearly complete current blockade upon inhibitor treatment. Subsequently, we showed that pharmacological inhibition of KCNJ2 and knockdown KCNJ2 significantly reduced tumor growth and resulted in prolonged survival in an orthotopic medulloblastoma mouse model. In summary, our data suggest that pharmacological inhibition of KCNJ2 may constitute a new therapeutic option for patients with high-risk medulloblastomas. Citation Format: Francesca Valdora, Florian Freier, Livia Garzia, Vijay Ramaswamy, Claudia Seyler, Thomas Hielscher, Nathan Brady, Paul A. Northcott, Marcel Kool, David TW Jones, Hendrik Witt, Gian Paolo Tonini, Wolfram Scheurlen, Hugo A. Katus, Andreas E. Kulozik, Edgar Zitron, Andrey Korshunov, Peter Lichter, Michael D. Taylor, Stefan M. Pfister, Marc Remke. KCNJ2 constitutes a marker and therapeutic target of high-risk medulloblastomas. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 5050. doi:10.1158/1538-7445.AM2013-5050
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 3552-3552
    Abstract: Background: Medulloblastoma constitutes the most common malignant brain tumor of childhood. Although multimodel treatment strategies, encompassing surgery, chemotherapy, and radiation, results in up to 80% five-year overall survival, recurrent medulloblastoma is almost always uniformly fatal. Recent integrated genomic studies have shown that medulloblastoma comprises 4 clinical and biologically distinct variants. We sought to delineate subgroup-specific differences in recurrent medulloblastoma. Methods: We identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children between 1994-2012, and subgrouped cases using nanoString. Clinical details were ascertained via retrospective chart review. Our findings were confirmed through analysis of an independent validation cohort of 85 recurrences. Primary and recurrent matched pairs were evaluated where possible. Results: Twenty-nine recurrent cases were identified, ten with a local recurrence within the tumor bed only, and 19 recurred with metastases. Notably, SHH tumors recurred more frequently in the tumor bed (8/11, 73%) whereas Group 3 and Group 4 developed with metastatic relapses more frequently (16/18, 89%; p & lt;0.01). Late recurrences were observed more commonly in Group 4 cases with a mean time to recurrence of 3.2 years compared to under two years for both SHH and Group 3 (p & lt;0.004), with a tendency to a prolonged interval to death post-recurrence in Group 4 cases (p=0.07). Spinal metastases in the absence of supratentorial metastases were observed in three non-SHH recurrences. The presence of metastases at diagnosis and histology were not predictive factors of recurrence site. In an independent validation cohort of 85 recurrences, 13 recurrences appeared in the tumor bed only of which nine were SHH and 72 recurred with metastases. Of these metastatic relapses, only three SHH tumors were observed, while 36 and 33 belonged to Group 3 or Group4 (p & lt;0.001), respectively. Strikingly, in all instances where matched primary and recurrent pairs were available, the subgroup affiliation remained stable at recurrence. Conclusions: Significant differences in the pattern of recurrence exist across medulloblastoma subgroups. Longer surveillance periods across the entire neuro-axis may be required for Group 4 patients even in the absence of local tumor bed or supratentorial recurrence. Intensified local therapy should be considered upon initial treatment for SHH patients. Citation Format: Vijay Ramaswamy, Marc Remke, Eric Bouffet, David Shih, Claudia Faria, Ulrich Schüller, Sri Gururangan, Roger McLendon, Nada Jabado, Adam Fontebasso, Sandra Dunn, Joanna Triscott, Cynthia Hawkins, Uri Tabori, Kari Codispoti, Roger Packer, Stefan M. Pfister, Andrey Korshunov, Michael D. Taylor. Subgroup-specific pattern of recurrence in medulloblastoma. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3552. doi:10.1158/1538-7445.AM2013-3552
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. NG05-NG05
    Abstract: Mutations in the TP53 tumor suppressor gene are the most common genetic aberrations across all human cancers. Germline TP53 mutations are also the hallmark genetic event in Li-Fraumeni syndrome (LFS), a highly penetrant human cancer susceptibility syndrome, conferring a predisposition to developing early-onset breast cancer, leukemias, bone and soft tissue sarcomas, brain tumors of various histologies, adrenocortical carcinomas, and a wide range of other malignancies. Although the link between mutant TP53 and human cancer is unequivocal, the mechanism by which this genetic aberration predisposes an individual to cancer remains to be elucidated. To address this gap, we surveyed the epigenome and describe herein the largest systematic analysis of DNA methylation in patients harboring germline TP53 mutations and TP53 wild-type individuals. Specifically, we performed genome-wide methylation analyses of peripheral blood leukocyte DNA in germline TP53 mutation carriers (n=72) and TP53 wild-type individuals who developed histologically comparable cancers (n=111). Targeted bisulfite pyrosequencing was performed on peripheral blood DNA in a validation cohort (n=76), and candidate sites were further evaluated in primary tumors from LFS patients. The differential methylation analysis demonstrates that in 183 patients, distinct DNA methylation signatures are associated with deleterious TP53 mutations. TP53 mutation-associated DNA methylation marks occur in genomic regions harboring known p53 binding sites and within genes encoding p53 pathway proteins. Moreover, loss-of-function TP53 mutations are significantly associated with differential methylation at the locus encoding miR-34A-a key component of the p53 regulatory network (adjusted p-value=3.1X10-15)-and validated in an independent patient cohort (n=76, 1.9X10-8). Targeted sequencing demonstrates that miR-34A is inactivated by hypermethylation across many different histologic types of primary tumors from LFS patients, such as brain tumors, osteosarcomas, rhabdomyosarcomas, and adrenocortical carcinomas. miR-34A promoter hypermethylation in tumors is also associated with decreased overall survival in a cohort of 29 patients with choroid plexus carcinomas, a characteristic LFS tumor (p & lt;0.05). The relationship between miR-34A hypermethylation and TP53 mutation was further validated in sporadic cancers, using the publicly available TCGA dataset. This demonstrates the robustness of this correlation and the applicability of these findings to other cancer contexts. This study refines the role of epigenetics in a cancer predisposition syndrome and is the first to implicate a microRNA, miR-34A, in human cancer susceptibility and provides a repository of genomic regions of deregulated methylation in the context of dysfunctional TP53. These findings suggest that deregulated DNA methylation at defined genomic loci may be an important hallmark of TP53-mediated cancer susceptibility. The most striking finding from this study is the relative miR-34A promoter hypomethylation at two adjacent CpG sites in peripheral blood from TP53 mutation carriers, confirmed in two independent cohorts and shown to cosegregate with TP53 mutations in LFS families. This result is remarkable since miR-34A is a central microRNA in the p53 network and the first microRNA identified as a direct proapoptotic target of the p53 pathway. The detection of miR-34A promoter hypomethylation in TP53 mutant cells that have not undergone malignant transformation supports a putative model whereby wild-type p53 may influence methylation patterns at this locus. In particular, in nontransformed cells that do not harbor mutations in TP53, wild-type p53 may be recruited to the miR-34A locus and sustain hypermethylation. We have performed a series of in vitro studies on primary patient-derived lymphoblastoid cell lines to corroborate this model. Conversely, in the setting of loss-of-function or deleterious mutations in TP53, mutant p53 may not able to maintain hypermethylation of the miR-34A promoter, leading to upregulation of miR-34A. Owing to the known redundant cellular roles of p53 and miR-34A, upregulation of miR-34A may be beneficial to cells harboring mutant p53 by supplementing the necessary basal tumor suppressive function that is lost when p53 is mutated. This mechanism may serve to guard against mutant p53, even when the wild-type allele remains. Accordingly, this may explain why miR-34A promoter hypermethylation is characteristic of TP53-mutant tumors that lack wild-type p53 because this microRNA serves a critical role in cell maintenance, and its loss may cooperate with other genetic and/or epigenetic events to drive malignancy. It is therefore not surprising that, akin to p53, somatic miR-34A deregulation is pervasive in human cancer and miR-34A inactivation by focal deletion or promoter hypermethylation has been reported in the literature to occur in a multitude of human malignancies. The precise mechanisms of how the miR-34A promoter undergoes somatic epimutation in tissues remains to be elucidated, and likely various pathways may converge to yield this outcome in different tissues. Given the high frequency of TP53 mutations in human malignancies, the relationship between mutant p53 and miR-34A has strong implications for the targeting of miR-34A in cancer. Encouragingly, studies have demonstrated in vivo the utility of miR-34A-based therapies in cancer, including intratumor or systemic delivery of lipid-formulated synthetic miR-34A. To further probe these intriguing findings, we conducted mechanistic studies aimed at functionally interrogating the the miR-34A-p53 axis. We utilized in vitro-based assays to modulate miR-34A levels in primary patient-derived fibroblast cell lines, and subsequently performed by RNA-sequencing of the transcriptional responses. Our results uncover a number of novel cellular roles for miR-34A in cell maintenance. Significantly, the transcriptional response to miR-34A inhibition revealed that this microRNA may be a crucial switch that can lead to numerous changes to noncoding RNA networks as well as known p53 pathways. Markedly increased expression of key components of the U12 (minor) spliceosome occurs when miR-34A expression is diminished, thereby identifying a novel putative role of miR-34A in modulating transcription of the U12 spliceosomal machinery. The majority of TP53 mutation-associated transcripts are involved in chromatin remodeling and nucleosome assembly, and are enriched for histone cluster 1 genes. These linker histones are crucial for maintaining higher-order chromatin structure and for regulating gene expression, demonstrating the interplay between genetic and epigenetic states. Lastly, miR-34A is associated with transcriptional regulation of a host of lincRNAs, including LINC-PINT, a p53-induced lincRNA. These results are the first to identify miR-34A as an important node in the transcriptional regulation of numerous noncoding RNAs and point to further study of these pathways. Taken together, these findings provide strong support for the impact of TP53 mutations on epigenetic dysregulation in human cancer susceptibility and demonstrate that miR-34A may be important in the pathogenesis of TP53-mediated cancer susceptibility. Moreover, miR-34A may be a putative novel therapeutic target and a marker for clinical prognostication. These studies also demonstrate that miR-34A is a central node in numerous p53-dependent and independent networks and provide further insight into the role of this critical tumor-suppressive microRNA. Further work aimed at refining our understanding of miR-34A-mediated pathways may yield additional molecular insight into the role of this microRNA in malignant transformation. Citation Format: Nardin Samuel, Gavin Wilson, Genevieve Deblois, Badr Id Said, Nicholas W. Fischer, Mathieu Lemire, Youliang Lou, Weili Li, Roumiana Alexandrova, Ana Novokmet, James Tran, Kim E. Nichols, Jonathan L. Finlay, Sanaa Choufani, Marc Remke, Vijay Ramaswamy, Florence M.G. Cavalli, Christine Elser, Lynn Meister, Michael D. Taylor, Uri Tabori, Meredith Irwin, Rosanna Weksberg, Jonathan D. Wasserman, Jean Gariepy, Mathieu Lupien, Daniele Merico, Andrew Paterson, Jordan R. Hansford, Maria Isabel W. Achatz, Thomas J. Hudson, David Malkin. TP53-mediated human cancer susceptibility is defined by epigenetic dysregulation of microRNA-34A [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr NG05. doi:10.1158/1538-7445.AM2017-NG05
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3551-3551
    Abstract: Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target. Citation Format: Fengfei Wang, Marc Remke, Kruttika Bhat, Eric Wong, Shuang Zhou, Vijay Ramaswamy, Adrian Dubuc, Ekokobe Fonkem, Saeed Salem, Hongbing Zhang, Tze-chen Hsieh, Stephen O'Rourke, Lizi Wu, David Li, Cynthia Hawkins, Isaac Kohane, Joseph Wu, Min Wu, Michael Taylor, Erxi Wu. A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3551. doi:10.1158/1538-7445.AM2015-3551
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 24 ( 2022-12-16), p. 4695-4695
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages