Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Nuclear Engineering Vol. 1 ( 2022-6-24)
    In: Frontiers in Nuclear Engineering, Frontiers Media SA, Vol. 1 ( 2022-6-24)
    Abstract: In the context of nuclear waste disposal, a pre-requisite to assure their long term safety is the need for safety assessment studies aided by computational simulations, in particular, radionuclide migration from the waste to the geosphere. It is established that underground repositories for nuclear waste will provide retardation barriers for radionuclides. However, the understanding of the sorption mechanisms of radionuclides onto mineral surfaces (i.e., illite, montmorillonite) is essential for modelling their migration. On the other hand, mechanistic-based radionuclide migration simulations, typically for 1 million years, poses a computational challenge. Surrogate-based simulations can be useful to enable sensitivity/uncertainty analysis that would be prohibitive otherwise. Considering the current challenges in modelling radionuclide migration and the importance of the results and implications of these simulations (i.e., for the public and nuclear waste management agencies), it is necessary to provide appropriate computational tools in a transparent and easy-to-use way. In this work, we aim to provide such tools in a framework that combines the simulation capabilities of OpenGeoSys6 for radionuclide migration and the approachable nature of Project Jupyter (i.e., JupyterLab), which provides a modular web-based environment for development, simulation and data. In this way, we aim to promote the collaborative research of radionuclide migration assessment and, at the same time, to guarantee the availability and reproducibility of the scientific outcome through the OpenGeoSys initiative.
    Type of Medium: Online Resource
    ISSN: 2813-3412
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 10 ( 2022-7-19)
    Abstract: Underground Research Laboratories (URLs) allow geoscientific in-situ experiments at large scale. At the Mont Terri URL in Switzerland, international research groups conduct numerous experiments in parallel. The measured and simulated data as well as research results obtained from them are highly relevant as they improve the general understanding of geological processes, for example in the context of radioactive waste disposal. Unfortunately, the data obtained at the test site is often only available to researchers who are directly involved in a particular experiment. Furthermore, typical visualisation techniques of such data by domain scientists often lack spatial context and accessing and exploring the data requires prior technical knowledge and a high level of effort. We created a digital replica of the Mont Terri URL and thereby implemented a prototype of a Virtual Experiment Information System that integrates highly heterogeneous data from several different sources. It allows accessing and exploring the relevant data embedded in its spatial context without much prior technical knowledge. Both, simulation results and observation data are displayed within the same system. The 4D visualisation approach focuses on three exemplary experiments conducted at Mont Terri and is easily transferable to other experiments or even other URLs. The Unity Game Engine has been used to develop the prototype. This allowed to build the application for various output devices like desktop computers or Virtual Reality hardware without much additional effort. The implemented system reduces the technical effort required to access and explore highly relevant research data and lowers the cognitive effort usually needed to gain insights from measurements, simulation models and context data. Moreover, it promotes exchange among research groups by enabling interactive visualisations embedded in the URL’s spatial context. In addition, a future use of the system for the communication of scientific methods and results to stakeholders or the general public is plausible.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741235-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Earth Science Vol. 9 ( 2021-12-13)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-12-13)
    Abstract: Underground thermal energy storage is an efficient technique to boost the share of renewable energies. However, despite being well-established, their environmental impacts such as the interaction with hydrocarbon contaminants is not intensively investigated. This study uses OpenGeoSys software to simulate the heat and mass transport of a borehole thermal energy storage (BTES) system in a shallow unconfined aquifer. A high-temperature (70 C) heat storage scenario was considered which imposes long-term thermal impact on the subsurface. Moreover, the effect of temperature-dependent flow and mass transport in a two-phase system is examined for the contaminant trichloroethylene (TCE). In particular, as subsurface temperatures are raised due to BTES operation, volatilization will increase and redistribute the TCE in liquid and gas phases. These changes are inspected for different scenarios in a contaminant transport context. The results demonstrated the promising potential of BTES in facilitating the natural attenuation of hydrocarbon contaminants, particularly when buoyant flow is induced to accelerate TCE volatilization. For instance, over 70% of TCE mass was removed from a discontinuous contaminant plume after 5 years operation of a small BTES installation. The findings of this study are insightful for an increased application of subsurface heat storage facilities, especially in contaminated urban areas.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 10 ( 2022-9-14)
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741235-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages