Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (11)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 20 ( 2022-10-14), p. 4574-4586
    Abstract: DNMT3A mutations confer a poor prognosis in acute myeloid leukemia (AML), but the molecular mechanisms downstream of DNMT3A mutations in disease pathogenesis are not completely understood, limiting targeted therapeutic options. The role of miRNA in DNMT3A-mutant AML pathogenesis is understudied. Experimental Design: DNA methylation and miRNA expression was evaluated in human AML patient samples and in Dnmt3a/Flt3-mutant AML mice. The treatment efficacy and molecular mechanisms of TLR7/8-directed therapies on DNMT3A-mutant AML were evaluated in vitro on human AML patient samples and in Dnmt3a/Flt3-mutant AML mice. Results: miR-196b is hypomethylated and overexpressed in DNMT3A-mutant AML and is associated with poor patient outcome. miR-196b overexpression in DNMT3A-mutant AML is important to maintain an immature state and leukemic cell survival through repression of TLR signaling. The TLR7/8 agonist resiquimod induces dendritic cell–like differentiation with costimulatory molecule expression in DNMT3A-mutant AML cells and provides a survival benefit to Dnmt3a/Flt3-mutant AML mice. The small molecule bryostatin-1 augments resiquimod-mediated AML growth inhibition and differentiation. Conclusions: DNMT3A loss-of-function mutations cause miRNA locus-specific hypomethylation and overexpression important for mutant DNMT3A–mediated pathogenesis and clinical outcomes. Specifically, the overexpression of miR-196b in DNMT3A-mutant AML creates a novel therapeutic vulnerability by controlling sensitivity to TLR7/8-directed therapies.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 2216-2216
    Abstract: Deletions at chromosome 6q15 belong one to the most frequent alterations in pros-tate cancer, and are linked to poor prognosis. Furthermore, there is a marked inverse relationship between 6q15 deletions and TMPRSS2:ERG fusions in prostate cancer. While heterogeneity may limit the applicability of diagnostic molecular markers, it is important to estimate in vivo heterogeneity and the sequel of appearance of potential prognostic markers. In case of one alteration developing after the other, we would expect a small area of cancer having both alterations within a larger area having only one (the first appearing) of these changes. In this study, we used our heterogeneity tissue microarray approach as a surrogate method to determine in vivo heterogeneity of 6q15 deletions and TMPRSS2:ERG fusions. We constructed a heterogeneity TMA containing samples taken from 10 dif-ferent tumor containing tissue blocks of 189 prostate cancers. Each prostate con-tained 1 to 6 individual cancer foci allowing the molecular analysis of more than 350 tumor foci. 6q15 deletion was analyzed by fluorescence in situ hybridization and ERG expression by immunohistochemistry. Only 6.6% of 334 ERG positive but 28.4% of 440 ERG negative TMA spots showed 6q15 deletions (p & lt;0.0001). A breakdown of these data to the level of tumor foci re-vealed 6q deletions in 34 tumor foci that were large enough to have at least 3 ana-lyzable TMA spots. The cohort included 42 tumor foci with a homogeneous ERG pos-itivity and 15 with a homogeneous 6q deletion. Remarkably, six of 42 homogeneously ERG positive tumor foci (14.3%) were focal 6q15-deleted, but none of 16 homogene-ous 6q15-deleted foci showed focal ERG positivity in the same tumor area (p=0.022). In conclusion of our study, the complete absence of ERG positive tumor foci in 6q15-deleted cancers suggests that the functional consequences of 6q15 deletions may prevent the development of TMPRSS2:ERG fusions. However, the development of 6q15 deletions is independent of the ERG status. Citation Format: Martina Kluth, Maria Christina Tsourlakis, David Meyer, Antje Krohn, Fabian Freudenthaler, Melanie Bauer, Georg Salomon, Hans Heinzer, Uwe Michl, Stefan Steurer, Ronald Simon, Guido Sauter, Thorsten Schlomm, Sarah Jane Pauline Minner. 6q15 deletion impede development of ERG fusion in prostate cancer. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2216. doi:10.1158/1538-7445.AM2014-2216
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 17 ( 2007-09-01), p. 8406-8411
    Abstract: DNA pooling in combination with high-throughput sequencing was done as a part of the Sequenom-Genefinder project. In the pilot study, we tested 83,715 single nucleotide polymorphisms (SNP), located primarily in gene-based regions, to identify polymorphic susceptibility variants for lung cancer. For this pilot study, 369 male cases and 287 controls of both sexes (white Europeans of Southern German origin) were analyzed. The study identified a candidate region in 22q12.2 that contained numerous SNPs showing significant case-control differences and that coincides with a region that was shown previously to be frequently deleted in lung cancer cell lines. The candidate region overlies the seizure 6-like (SEZ6L) gene. The pilot study identified a polymorphic Met430Ile substitution in the SEZ6L gene (SNP rs663048) as the top candidate for a variant modulating risk of lung cancer. Two replication studies were conducted to assess the association of SNP rs663048 with lung cancer risk. The M. D. Anderson Cancer Center study included 289 cases and 291 controls matched for gender, age, and smoking status. The Liverpool Lung Project (a United Kingdom study) included 248 cases and 233 controls. Both replication studies showed an association of the rs663048 with lung cancer risk. The homozygotes for the variant allele had more than a 3-fold risk compared with the wild-type homozygotes [combined odds ratio (OR), 3.32; 95% confidence interval (95% CI), 1.81–7.21]. Heterozygotes also had a significantly elevated risk of lung cancer from the combined replication studies with an OR of 1.15 (95% CI, 1.04–1.59). The effect remained significant after adjusting for age, gender, and pack-years of tobacco smoke. We also compared expression of SEZ6L in normal human bronchial epithelial cells (n = 7), non–small cell lung cancer (NSCLC; n = 52), and small cell lung cancer (SCLC; n = 22) cell lines by using Affymetrix HG-U133A and HG-U133B GeneChips. We found that the average expression level of SEZ6L in NSCLC cell lines was almost two times higher and in SCLC cell lines more than six times higher when compared with normal lung epithelial cell lines. Using the National Center for Biotechnology Information Gene Expression Omnibus database, we found a ∼2-fold elevated and statistically significant (P = 0.004) level of SEZ6L expression in tumor samples compared with normal lung tissues. In conclusion, the results of these studies representing 906 cases compared with 811 controls indicate a role of the SEZ6L Met430Ile polymorphic variant in increasing lung cancer risk. [Cancer Res 2007;67(17):8406–11]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 1 ( 2019-01-01), p. 274-285
    Abstract: Previous prospective studies assessing the relationship between circulating concentrations of vitamin D and prostate cancer risk have shown inconclusive results, particularly for risk of aggressive disease. In this study, we examine the association between prediagnostic concentrations of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] and the risk of prostate cancer overall and by tumor characteristics. Principal investigators of 19 prospective studies provided individual participant data on circulating 25(OH)D and 1,25(OH)2D for up to 13,462 men with incident prostate cancer and 20,261 control participants. ORs for prostate cancer by study-specific fifths of season-standardized vitamin D concentration were estimated using multivariable-adjusted conditional logistic regression. 25(OH)D concentration was positively associated with risk for total prostate cancer (multivariable-adjusted OR comparing highest vs. lowest study-specific fifth was 1.22; 95% confidence interval, 1.13–1.31; P trend & lt; 0.001). However, this association varied by disease aggressiveness (Pheterogeneity = 0.014); higher circulating 25(OH)D was associated with a higher risk of nonaggressive disease (OR per 80 percentile increase = 1.24, 1.13–1.36) but not with aggressive disease (defined as stage 4, metastases, or prostate cancer death, 0.95, 0.78–1.15). 1,25(OH)2D concentration was not associated with risk for prostate cancer overall or by tumor characteristics. The absence of an association of vitamin D with aggressive disease does not support the hypothesis that vitamin D deficiency increases prostate cancer risk. Rather, the association of high circulating 25(OH)D concentration with a higher risk of nonaggressive prostate cancer may be influenced by detection bias. Significance: This international collaboration comprises the largest prospective study on blood vitamin D and prostate cancer risk and shows no association with aggressive disease but some evidence of a higher risk of nonaggressive disease.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 4746-4746
    Abstract: One hallmark of cancer is the accelerated metabolism, high energy requirements, and increased glucose uptake by the tumor cells, the latter being the first and rate-limiting step for glucose metabolism. Glucose transport into the tumor cell is mediated by facilitative high-affinity glucose transporter (GLUT) proteins. Among the 14 GLUT proteins, expression of GLUT1 in normal organs is nearly exclusively restricted to the blood brain barrier, while other GLUTs are also expressed in a wide variety of vital organs such as liver and heart. Interestingly, GLUT1 expression is highly regulated by hypoxia-inducible factor (HIF)-1α, a key driver of tumor progression. In line with this finding, GLUT1 over-expression was found to be associated with tumor progression and poor overall survival in various tumor indications. Consequently, GLUT1 represents a potential target for cancer treatment. Therefore, we have developed a highly-selective GLUT1 inhibitor, namely BAY-876, with selectivity over GLUT2, 3, and 4 of 4700-, 800-, and 135-fold, respectively. We here show for the first time the pharmacological characterization of BAY-876, comprising inhibition of glucose-uptake, anti-proliferative activity in vitro, and anti-tumor efficacy in vivo in models of different tumor indications in monotherapy as well as first results on the combinability of BAY-876. Furthermore, at the therapeutic dose, BAY-876 treatment did not show any relevant finding on the behavior of treated mice in the Irwin test, assuming no or only minor effects on brain function. In conclusion, BAY-876 is the first GLUT1-selective inhibitor which reduces glucose uptake and growth of tumor cells with sufficient tolerability at the efficacious dose in preclinical models. Citation Format: Charlotte Kopitz, Luisella Toschi, Carolyn Algire, Mélanie Héroult, Anna-Lena Frisk, Kirstin Meyer, Arndt Schmitz, Eleni Lagkadinou, Heike Petrul, Iring Heisler, Roland Neuhaus, Bernd Buchmann, Herbert Himmel, Marcus Bauser, Andrea Haegebarth, Karl Ziegelbauer. Pharmacological characterization of BAY-876, a novel highly selective inhibitor of glucose transporter (GLUT)-1 in vitro and in vivo. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4746.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 1 ( 2019-01-01), p. 99-113
    Abstract: The DNA-methylating drug temozolomide, which induces cell death through apoptosis, is used for the treatment of malignant glioma. Here, we investigate the mechanisms underlying the ability of temozolomide to induce senescence in glioblastoma cells. Temozolomide-induced senescence was triggered by the specific DNA lesion O6-methylguanine (O6MeG) and characterized by arrest of cells in the G2–M phase. Inhibitor experiments revealed that temozolomide-induced senescence was initiated by damage recognition through the MRN complex, activation of the ATR/CHK1 axis of the DNA damage response pathway, and mediated by degradation of CDC25c. Temozolomide-induced senescence required functional p53 and was dependent on sustained p21 induction. p53-deficient cells, not expressing p21, failed to induce senescence, but were still able to induce a G2–M arrest. p14 and p16, targets of p53, were silenced in our cell system and did not seem to play a role in temozolomide-induced senescence. In addition to p21, the NF-κB pathway was required for senescence, which was accompanied by induction of the senescence-associated secretory phenotype. Upon temozolomide exposure, we found a strong repression of the mismatch repair proteins MSH2, MSH6, and EXO1 as well as the homologous recombination protein RAD51, which was downregulated by disruption of the E2F1/DP1 complex. Repression of these repair factors was not observed in G2–M arrested p53-deficient cells and, therefore, it seems to represent a specific trait of temozolomide-induced senescence. Significance: These findings reveal a mechanism by which the anticancer drug temozolomide induces senescence and downregulation of DNA repair pathways in glioma cells.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 1442-1442
    Abstract: Malignant cells are known for their accelerated metabolism, high energy requirements, and increased glucose uptake. Transport of glucose across the plasma membrane is the first and rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose uptake in malignant cells has been associated with upregulated expression of glucose transporters, mainly overexpression of GLUT1 and/or GLUT3. There is limited knowledge about how selective (e.g. GLUT1) versus broad (multi-) GLUT inhibition affects glucose homeostasis in tumor bearing mice. Using potent small molecule inhibitors, we compared [14C]-2-Deoxy-D-Glucose (2-DG) distribution after selective GLUT1 versus GLUT1, 3 and 4 [multi-GLUT] inhibition and versus control in human NSCLC NCI-H460 tumor bearing mice. A single dose of a GLUT1 selective and a multi-GLUT inhibitor were administered to NCI-H460 tumor bearing NMRI nu/nu mice. At the respective Cmax concentrations, a bolus of 2-DG was rapidly injected intra-peritoneally and the distribution of metabolically stable 2-DG was obtained using whole-body autoradiography after 15 min and 120 min. With the multi-GLUT inhibitor only a very short inhibition of 2-DG uptake was observed in the NCI-H460 tumors while a long-lasting inhibition was detected in heart, brain and brown fat tissue. In contrast, a long-lasting inhibition of 2-DG uptake was observed in NCI-H460 tumors for the selective GLUT1 inhibitor. 2-DG concentrations were reduced in the brain following administration of the selective GLUT1 inhibitor at 15 min and returned to normal levels at 120 min while the tumor 2-DG concentration stayed low. The 2-DG findings go in parallel with the histopathological findings present in the brain and heart after treatment with the multi-GLUT inhibitor. However, similar histopathological findings have not been observed in the brain and heart after treatment with the selective GLUT-1 inhibitor. Therefore, selective GLUT1 inhibition is associated with a sustained low 2-DG concentration in the NCI-H460 tumors while only minor changes in glucose homeostasis were observed in other organ systems. Citation Format: Melanie Heroult, Wolfram Steinke, Anna-Lena Frisk, Sandra Borkowski, Kirstin Meyer, Heike Petrul, Iring Heisler, Maria Quanz, Roland Neuhaus, Bernd Buchmann, Thomas Mueller, Marcus Bauser, Andrea Haegebarth, Michael Brands, Karl Ziegelbauer. Effects of selective and broad glucose transporter (GLUT) inhibition on glucose distribution in tumor bearing mice. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1442. doi:10.1158/1538-7445.AM2014-1442
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 12, No. 4 ( 2006-02-15), p. 1373-1382
    Abstract: PURPOSE: Advanced melanoma is a highly drug-refractory neoplasm representing a significant unmet medical need. We sought to identify melanoma-associated cell surface molecules and to develop as well as preclinically test immunotherapeutic reagents designed to exploit such targets. EXPERIMENTAL DESIGN AND RESULTS: By transcript profiling, we identified glycoprotein NMB (GPNMB) as a gene that is expressed by most metastatic melanoma samples examined. GPNMB is predicted to be a transmembrane protein, thus making it a potential immunotherapeutic target in the treatment of this disease. A fully human monoclonal antibody, designated CR011, was generated to the extracellular domain of GPNMB and characterized for growth-inhibitory activity against melanoma. The CR011 monoclonal antibody showed surface staining of most melanoma cell lines by flow cytometry and reacted with a majority of metastatic melanoma specimens by immunohistochemistry. CR011 alone did not inhibit the growth of melanoma cells. However, when linked to the cytotoxic agent monomethylauristatin E (MMAE) to generate the CR011-vcMMAE antibody-drug conjugate, this reagent now potently and specifically inhibited the growth of GPNMB-positive melanoma cells in vitro. Ectopic overexpression and small interfering RNA transfection studies showed that GPNMB expression is both necessary and sufficient for sensitivity to low concentrations of CR011-vcMMAE. In a melanoma xenograft model, CR011-vcMMAE induced significant dose-proportional antitumor effects, including complete regressions, at doses as low as 1.25 mg/kg. CONCLUSION: These preclinical results support the continued evaluation of CR011-vcMMAE for the treatment of melanoma.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2008
    In:  Clinical Cancer Research Vol. 14, No. 1 ( 2008-01-01), p. 67-73
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 1 ( 2008-01-01), p. 67-73
    Abstract: Purpose: Cyclooxygenase-2 (COX-2) overexpression has been associated with a poor prognosis in many cancers. However, the role of COX-2 overexpression in head and neck cancers remains undetermined. The objective of this study was to evaluate whether COX-2 is a prognostic factor in glottic cancer. Experimental Design: This study was part of a phase III placebo-controlled randomized trial evaluating the efficacy of α-tocopherol in reducing second primary cancers (SPC) in head and neck cancer patients. Immunohistochemical analyses were conducted on pretreatment biopsies of 301 patients with early-stage glottic cancer treated by radiotherapy. The median value of 50% of positive tumor cells was the cutoff point used to define COX-2 overexpression. Outcomes considered in the statistical analysis were recurrence, SPC, and death. The Cox proportional hazards model was used to estimate the hazard ratios (HR) and their 95% confidence intervals (95% CI). Results: The HR associated with COX-2 overexpression was 0.94 (95% CI, 0.55-1.62) for recurrence. The HR associated with SPC was 2.63 (95% CI, 1.32-5.23) for the first 3.5 years of follow-up and 0.55 (95% CI, 0.22-1.32) for the following 3.5 years. The HR associated with COX-2 overexpression was 1.57 (95% CI, 1.01-2.45) for overall mortality. Conclusions: COX-2 overexpression in glottic cancer was associated with increased overall mortality and an increased risk of SPC during the early follow-up period. Future studies are needed to explain observed effects on SPC. COX-2 expression may prove helpful in defining an individual patient's prognosis.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2008
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 8_Supplement ( 2023-04-14), p. LB192-LB192
    Abstract: Despite significant advances in outcomes with immunotherapy, most cancer patients do not benefit from currently approved immune checkpoint inhibitors (ICI). The reasons for ICI resistance are multi-faceted and suggest that additional immunomodulation is required to improve outcomes. MTL-CEBPA is a novel immunotherapy based on RNA activation that upregulates expression of a master myeloid transcription factor, CEBPA. The small activating RNA for CEBPA is encapsulated within a NOV340 liposome that targets the myeloid cell lineage. MTL-CEBPA has shown favorable safety and promising clinical activity in combination with tyrosine kinase inhibitors (Sorafenib) in hepatocellular carcinoma (NCT-02716012) [Hashimoto et al, CCR 2021; Sarker et al, CCR 2020]. We recently reported preliminary clinical data from the ongoing multi-center phase 1 TIMEPOINT study (NCT-04105335) evaluating the safety, pharmacokinetics, immunomodulation, and clinical activity of MTL-CEBPA in combination with pembrolizumab in patients with solid tumors who have exhausted standard therapy. This demonstrated a favorable safety profile and initial clinical activity [Plummer et al, JITC 2021] . Here we report the findings from a biomarker pharmacodynamic analysis of paired baseline and cycle 2 tumor sample biopsies in 23 patients from the TIMEPOINT trial. Brightplex® IHC and digital pathology analyses of the samples for myeloid and T cell panels were undertaken, alongside gene expression (Nanostring I/O 360). Prior to study treatment, nine patients out of 23 had an immune cold tumor microenvironment (TME) at baseline as measured by the Immunosign®21 score. Following the combination of MTL-CEBPA with pembrolizumab, seven of these patients converted to an inflamed TME by Immunosign®21 (P=0.008). This change in the TME was associated with infiltration of CD8 and cytotoxic T cells (CD8+, GrzB+, Ki-67+) (P=0.1). GSEA analysis indicated that a Tstem-like signature was enriched post-treatment. A Brightplex® IHC analysis of myeloid cells in these patients indicated that, post treatment, there was a significant influx of HLA-DR+ myeloid cells into the TME (P=0.04). We also observed a significant increase in the expression of CXCL9, 10, and 11. The remaining 14 patients had an inflamed TME at baseline. Here, we also observed an increase in HLA-DR+ cells, T cells, and chemokines, though to a lesser extent. Further, however, in these inflamed tumors—which have significantly greater infiltration of myeloid-derived suppressor cells (MDSCs) than desert tumors—we observed a reduction in 8/10 patients with detectable PMN-MDSCs (P=0.1) post treatment, consistent with the mechanism of action of CEBPA. An expression signature based on 18 genes significantly enriched for clinical response across all patients. Collectively, these data suggest a positive immunomodulatory TME effect of the combination of MTL-CEBPA with pembrolizumab. In both hot and cold TME tumors, the combination drives directed differentiation of progenitor monocytes into HLA-DR+ myeloid cells secreting chemokines that stimulate the ingress of T cells into the TME. We observe a significant positive correlation between the change in cytotoxic T cells and HLA-DR+ myeloid cells post treatment (P=0.004). These effects are most pronounced in cold tumors. Citation Format: Ruth Plummer, Mikael Sodergren, Brid Ryan, Ilian Tchakov, Nina Raulf, Rose Hodgson, CP Tan, Joanna P. Nicholls, Alison Adderkin, N Vasileiadou, Vikash Reebye, Tim Meyer, David J. Pinato, Debashis Sarker, Bristi Basu, Sarah Blagden, Natalie Cook, Jeff Evans, Jeffrey Yachnin, Cheng Ean Chee, Dan Li, Anthony El-Khoueiry, Maria Diab, Kai-Wen Huang, Marcus S. Noel, Bridget Keenan, Devalingam Mahalingam, Melanie Grosso, Denis Arnaud, Aurelie Auguste, Jan Storkholm, Iain McNeish, Robert Habib, John J. Rossi, Nagy Habib. MTL-CEBPA in combination with pembrolizumab converts an immune desert to an inflamed TME in solid tumors resistant to checkpoint blockade [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 2 (Clinical Trials and Late-Breaking Research); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(8_Suppl):Abstract nr LB192.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages