feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Gruen, D  (170)
Medientyp
Verlag/Herausgeber
Person/Organisation
Sprache
Erscheinungszeitraum
  • 11
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 505, No. 3 ( 2021-06-25), p. 4626-4645
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 505, No. 3 ( 2021-06-25), p. 4626-4645
    Kurzfassung: We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate with a different model for the prior probability of the map: Kaiser–Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realistic ΛCDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 507, No. 3 ( 2021-09-09), p. 3771-3788
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 507, No. 3 ( 2021-09-09), p. 3771-3788
    Kurzfassung: Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is $4{{\ \rm per\ cent}}$.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 509, No. 4 ( 2021-12-10), p. 4982-4996
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 509, No. 4 ( 2021-12-10), p. 4982-4996
    Kurzfassung: The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey. In this paper, we demonstrate the feasibility of adopting DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the framework of modified gravity. We utilize the angular clustering of the DMASS galaxies, cosmic shear of the DES metacalibration sources, and cross-correlation of the two as data vectors. By jointly fitting the combination of the data with the RSD measurements from the CMASS sample and Planck data, we obtain the constraints on modified gravity parameters $\mu _0=-0.37^{+0.47}_{-0.45}$ and $\Sigma _0=0.078^{+0.078}_{-0.082}$. Our constraints of modified gravity with DMASS are tighter than those with the DES Year 1 redMaGiC sample with the same external data sets by 29 per cent for μ0 and 21 per cent for Σ0, and comparable to the published results of the DES Year 1 modified gravity analysis despite this work using fewer external data sets. This improvement is mainly because the galaxy bias parameter is shared and more tightly constrained by both CMASS and DMASS, effectively breaking the degeneracy between the galaxy bias and other cosmological parameters. Such an approach to optimally combine photometric and spectroscopic surveys using a photometric sample equivalent to a spectroscopic sample can be applied to combining future surveys having a limited overlap such as DESI and LSST.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 511, No. 2 ( 2022-02-11), p. 2170-2185
    Kurzfassung: Cosmological information from weak lensing surveys is maximized by sorting source galaxies into tomographic redshift subsamples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present hyperrank, a new method for marginalizing over redshift distribution uncertainties, using discrete samples from the space of all possible redshift distributions, improving over simple parametrized models. In hyperrank, the set of proposed redshift distributions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as a general method for marginalizing over discrete realizations of data vector variation with nuisance parameters, which can consequently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Survey (DES). We show that the method can correctly and efficiently marginalize over a wide range of models for the redshift distribution uncertainty. Finally, we compare hyperrank to the common mean-shifting method of marginalizing over redshift uncertainty, validating that this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 498, No. 2 ( 2020-09-21), p. 2575-2593
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 498, No. 2 ( 2020-09-21), p. 2575-2593
    Kurzfassung: Rapidly evolving transients (RETs), also termed fast blue optical transients, are a recently discovered group of astrophysical events that display rapid luminosity evolution. RETs typically rise to peak in less than 10 d and fade within 30, a time-scale unlikely to be compatible with the decay of Nickel-56 that drives conventional supernovae (SNe). Their peak luminosity spans a range of −15 & lt; Mg & lt; −22.5, with some events observed at redshifts greater than 1. Their evolution on fast time-scales has hindered high-quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper, we present the largest sample of RETs to date, comprising 106 objects discovered by the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission lines from OzDES spectroscopy, we derive stellar masses and star formation rates (SFRs) for 49 host galaxies, and metallicities ([O/H]) for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs (〈log (sSFR)〉 ∼ −9.6), indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long-duration gamma-ray bursts and superluminous SN host galaxies (〈12 + log (O/H)〉 ∼ 9.4). There are no clear relationships between mass or SFR of the host galaxies and the peak magnitudes or decline rates of the transients themselves.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2020
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 510, No. 1 ( 2021-12-17), p. 216-229
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 510, No. 1 ( 2021-12-17), p. 216-229
    Kurzfassung: The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10–20 per cent of the observed temperature depression can be accounted for via its Integrated Sachs–Wolfe imprint. However, R ≳ 100 h−1Mpc supervoids elsewhere in the sky have shown ISW imprints AISW ≈ 5.2 ± 1.6 times stronger than expected from ΛCDM (AISW = 1), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant underdensity in the Cold Spot’s direction at z & lt; 0.2. We also show, with S/N ≳ 5 significance, that the Eridanus supervoid appears as the most prominent large-scale underdensity in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about 30 per cent lower than expected from similar peaks found in N-body simulations based on the standard ΛCDM model with parameters Ωm = 0.279 and σ8 = 0.82. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 510, No. 4 ( 2022-02-01), p. 6150-6189
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 510, No. 4 ( 2022-02-01), p. 6150-6189
    Kurzfassung: Lensing without borders is a cross-survey collaboration created to assess the consistency of galaxy–galaxy lensing signals (ΔΣ) across different data sets and to carry out end-to-end tests of systematic errors. We perform a blind comparison of the amplitude of ΔΣ using lens samples from BOSS and six independent lensing surveys. We find good agreement between empirically estimated and reported systematic errors which agree to better than 2.3σ in four lens bins and three radial ranges. For lenses with zL & gt; 0.43 and considering statistical errors, we detect a 3–4σ correlation between lensing amplitude and survey depth. This correlation could arise from the increasing impact at higher redshift of unrecognized galaxy blends on shear calibration and imperfections in photometric redshift calibration. At zL & gt; 0.54, amplitudes may additionally correlate with foreground stellar density. The amplitude of these trends is within survey-defined systematic error budgets that are designed to include known shear and redshift calibration uncertainty. Using a fully empirical and conservative method, we do not find evidence for large unknown systematics. Systematic errors greater than 15 per cent (25 per cent) ruled out in three lens bins at 68 per cent (95 per cent) confidence at z & lt; 0.54. Differences with respect to predictions based on clustering are observed to be at the 20–30 per cent level. Our results therefore suggest that lensing systematics alone are unlikely to fully explain the ‘lensing is low’ effect at z & lt; 0.54. This analysis demonstrates the power of cross-survey comparisons and provides a promising path for identifying and reducing systematics in future lensing analyses.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 520, No. 2 ( 2023-02-07), p. 2009-2023
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 2 ( 2023-02-07), p. 2009-2023
    Kurzfassung: Reverberation mapping measurements have been used to constrain the relationship between the size of the broad-line region and luminosity of active galactic nuclei (AGN). This R–L relation is used to estimate single-epoch virial black hole masses, and has been proposed to use to standardize AGN to determine cosmological distances. We present reverberation measurements made with Hβ from the 6-yr Australian Dark Energy Survey (OzDES) Reverberation Mapping Program. We successfully recover reverberation lags for eight AGN at 0.12 & lt; z & lt; 0.71, probing higher redshifts than the bulk of Hβ measurements made to date. Our fit to the R–L relation has a slope of α = 0.41 ± 0.03 and an intrinsic scatter of σ = 0.23 ± 0.02 dex. The results from our multi-object spectroscopic survey are consistent with previous measurements made by dedicated source-by-source campaigns, and with the observed dependence on accretion rate. Future surveys, including LSST, TiDES, and SDSS-V, which will be revisiting some of our observed fields, will be able to build on the results of our first-generation multi-object reverberation mapping survey.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2023
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 518, No. 4 ( 2022-12-08), p. 5340-5355
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 518, No. 4 ( 2022-12-08), p. 5340-5355
    Kurzfassung: We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package baccoemu to accelerate the evaluation of the baryonic non-linear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next-generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a ∼2σ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c \gt 10^{13.2} \, h^{-1} \, \mathrm{M}_{\odot }$ (95 per cent C.L.). The best-fitting baryonic suppression is $\sim 5{{\ \rm per\ cent}}$ at $k=1.0 \, {\rm Mpc}\ h^{-1}$ and $\sim 15{{\ \rm per\ cent}}$ at $k=5.0 \, {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 483, No. 4 ( 2019-03-11), p. 4866-4883
    Kurzfassung: We present angular diameter distance measurements obtained by locating the baryon acoustic oscillations (BAO) scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1336 deg2 with 0.6 〈 $z$photo 〈 1 and a typical redshift uncertainty of 0.03(1 + $z$). This sample was selected, as fully described in a companion paper, using a colour/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the comoving transverse separation, and spherical harmonics. Further, we compare results obtained from template-based and machine-learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, DA, at the effective redshift of our sample divided by the true physical scale of the BAO feature, rd. We obtain close to a 4 per cent distance measurement of DA($z$eff = 0.81)/rd = 10.75 ± 0.43. These results are consistent with the flat Λ cold dark matter concordance cosmological model supported by numerous other recent experimental results.
    Materialart: Online-Ressource
    ISSN: 0035-8711 , 1365-2966
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2019
    ZDB Id: 2016084-7
    SSG: 16,12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz