Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (1)
  • Fleige, Heiner  (1)
Type of Medium
Publisher
  • Frontiers Media SA  (1)
Person/Organisation
Language
Years
  • 1
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 10 ( 2022-2-14)
    Abstract: The mechanical strength of agricultural soils depends on many soil properties and functions. The database, “soil strength and consequences for sustainable land use and soil management SOILMECHDAT-Kiel”, originates from the “Horn Research Group” includes analyses of undisturbed soil samples taken from more than 460 profiles in and is developed in collaboration with BONARES, a funding initiative of the German Federal Ministry for Education and Research that focuses on the sustainable use of soils. For over 40 years, over 42 different authors recorded 59 physical and 29 chemical parameters for complete soil profiles. In order to the aim of the initial analyses of this data is to determine the influence of bulk density (BD) organic matter (OM) and time (year) on precompression stress (Pc) and saturated hydraulic conductivity (ks) as a function of Pc. Three main textural groups sand, loam, and silt for both topsoils and subsoils (SS) were studied. In loamy and silty subsoils BD and OM are not related to Pc ( R 2 = 0.17 and R 2 = 0.25). OM and bulk density are more related to Pc in sandy soils ( R 2 0.55–0.59). The link between ks and Pc showed that sandy soils have a significantly higher Pc ( & gt;150 kPa) and conductivities did not change much. In loamy soils, with a Pc & gt; 90 kPa, 50% of the ks fell below the critical value of 10 cm d −1 . For silty soils, at a Pc of 60 kPa, 50% of the data fall below the critical value of ks. These findings suggest that the stability of loamy and silty soils not only depends on OM and BD, but requires further data to explain the variation in the measurements. With respect to ks, the results show that fertile silty soils are more sensitive than formerly defined.
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2741535-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages