Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Type of Medium
Publisher
  • AIP Publishing  (2)
Language
Years
  • 1
    In: Physics of Fluids, AIP Publishing, Vol. 35, No. 7 ( 2023-07-01)
    Abstract: For developing a reliable data-driven Reynold stress tensor (RST) model, successful reconstruction of the mean velocity field based on high-fidelity information (i.e., direct numerical simulations or large-eddy simulations) is crucial and challenging, considering the ill-conditioning problem of Reynolds-averaged Navier–Stokes (RANS) equations. It is shown that the frozen treatment of the Reynolds force vector (RFV) reduced the ill-conditioning problem even for the cases with a very high Reynolds number; therefore, it has a better potential to be used in the data-driven development of the RANS models. In this study, we compare the algebraic RST correction models that are trained based on the frozen treatment of both RFV and RST for the aforementioned potential. We derive a vector-based framework for the RFV similar to the tensor-based framework for the RST. Regarding the complexity of the models, we compare sparse regression on a set of candidate functions and a multi-layer perceptron network. The training process is applied to the high-fidelity data of three cases, including square-duct secondary flow, roughness-induced secondary flow, and periodic hills flow. The results showed that using the RFV discrepancy values, instead of the RST discrepancy values, generally does not improve the reconstruction of the mean velocity field despite the fact that the propagation of the RFV discrepancy data shows lower errors in the propagation process of all three cases. Regarding the complexity, using multi-layer perceptron improves the prediction of the cases with secondary flows, but it shows similar performance in the case of periodic hills.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Journal of Renewable and Sustainable Energy Vol. 14, No. 3 ( 2022-05-01)
    In: Journal of Renewable and Sustainable Energy, AIP Publishing, Vol. 14, No. 3 ( 2022-05-01)
    Abstract: With the growing number of wind farms over the last few decades and the availability of large datasets, research in wind-farm flow modeling—one of the key components in optimizing the design and operation of wind farms—is shifting toward data-driven techniques. However, given that most current data-driven algorithms have been developed for canonical problems, the enormous complexity of fluid flows in real wind farms poses unique challenges for data-driven flow modeling. These include the high-dimensional multiscale nature of turbulence at high Reynolds numbers, geophysical and atmospheric effects, wake-flow development, and incorporating wind-turbine characteristics and wind-farm layouts, among others. In addition, data-driven wind-farm flow models should ideally be interpretable and have some degree of generalizability. The former is important to avoid a lack of trust in the models with end-users, while the most popular strategy for the latter is to incorporate known physics into the models. This article reviews a collection of recent studies on wind-farm flow modeling, covering both purely data-driven and physics-guided approaches. We provide a thorough analysis of their modeling approach, objective, and methodology and specifically focus on the data utilized in the reviewed works.
    Type of Medium: Online Resource
    ISSN: 1941-7012
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2444311-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages