Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Pharmaceutics Vol. 14, No. 3 ( 2022-03-02), p. 554-
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 3 ( 2022-03-02), p. 554-
    Abstract: Griseofulvin is a poorly water-soluble drug administered orally to treat topical fungal infections of the skin and hair. However, oral administration leads to poor and unpredictable drug pharmacokinetics. Additionally, griseofulvin is unstable in the presence of light. A layer-by-layer (LbL) nanocoating approach was employed to curb these shortcomings by stabilizing emulsions, lyophilized emulsions, and reconstituted emulsions with a layer each of whey protein, and either hyaluronic acid, amylopectin, or alginic acid, which captured the drug. The coating materials are biological, environmentally benign, and plentiful. Photostability studies indicated that the LbL particles afforded 6 h of protection of the topical application. In vitro absorption studies showed that griseofulvin concentrated preferentially in the stratum corneum, with virtually no transdermal delivery. Therefore, LbL-nanocoated emulsions, lyophilized particles, and reconstituted lyophilized emulsions can produce a viable topical delivery system to treat superficial fungal infections.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceuticals, MDPI AG, Vol. 11, No. 4 ( 2018-12-05), p. 134-
    Abstract: Permeation models are often used to determine diffusion properties of a drug through a membrane as it is released from a delivery system. In order to circumvent problematic in vivo studies, diffusion studies can be performed in vitro, using (semi-)synthetic membranes. In this study salicylic acid permeation was studied, employing a nitrocellulose membrane. Both saturated and unsaturated salicylic acid solutions were studied. Additionally, the transport of salicylic acid through the nitrocellulose membrane was simulated by computational modelling. Experimental observations could be explained by the transport mechanism that was revealed by dissipative particle dynamics (DPD) simulations. The DPD model was developed with the aid of atomistic scale molecular dynamics (AA-MD). The choice of a suitable model membrane can therefore, be predicted by AA-MD and DPD simulations. Additionally, the difference in the magnitude of release from saturated and unsaturated salicylic acid and solutions could also be observed with DPD. Moreover, computational studies can reveal hidden variables such as membrane-permeant interaction that cannot be measured experimentally. A recommendation is made for the development of future model permeation membranes is to incorporate computational modelling to aid the choice of model.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 13, No. 8 ( 2023-07-31), p. 2033-
    Abstract: Experiments with progenies of perennial species such as coffee are generally affected by the heterogeneity of residual variances between information repeatedly collected in space and time on the same individual. In this study, we propose an index that considers the individual heritability of multiple traits for progeny selection and evaluate the applicability of this index in comparison with other indices in a real dataset. Data from 30 coffee genotypes in the F4:5 generation were used to obtain the individual heritability values (hi2) of progenies that were subjected to factorial analysis to obtain the scores and construct a scatter plot, where graphical analysis (GA) was applied. Genetic gains were obtained for productivity and resistance to Cercospora leaf spot using GA. The best performance among the strategies (−12.11%) was obtained using GA for resistance to Cercospora leaf spot, which has low heritability—contrary to the result obtained using the commonly used index based on the sum of Mulamba and Mock ranks. The GA approach allows an assertive selection to minimize the effects of heterogeneity between seasons, and greater genetic gains are obtained. Its use as a tool for the selection of perennial plant progenies based on multiple characters is promising.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Molecules Vol. 24, No. 7 ( 2019-04-03), p. 1309-
    In: Molecules, MDPI AG, Vol. 24, No. 7 ( 2019-04-03), p. 1309-
    Abstract: Since water-soluble porphyrin complexes of lanthanides(III) have proved to be promising for medical applications (e.g., luminescence imaging, photodynamic therapy, and theranostics), the investigation of the formation, photophysical, and photochemical properties of such coordination compounds provides useful pieces of information for their potential usage. Steady-state and time-resolved fluorometry, UV–Vis absorption spectroscopy, and continuous-wave photolysis were utilized for this purpose. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin formed mono- and bisporphyrin complexes with samarium(III), europium(III), and gadolinium(III) as representatives in the middle of the lanthanide series. The special photoinduced behavior of these compounds was mostly determined by the position of the metal center, which was located out of the ligand plane, thus distorting it. Besides, the photochemical and, especially, photophysical features of the corresponding mono- and bisporphyrin complexes were similar because, in the latter species, two monoporphyrins were connected by a weak metal bridge between the peripheral sulfonato substituents (tail-to-tail dimerization). The formation of these coordination compounds and the transformation reactions between the mono- and bisporphyrins were rather slow in the dark at room temperature. These processes were accelerated by visible irradiation. However, dissociation and, especially, redox degradation were the main photoreactions in these systems, although with low quantum yields. Additionally, depending on the excitation wavelength, new types of photoproducts were also detected.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Biosensors, MDPI AG, Vol. 12, No. 11 ( 2022-11-11), p. 1003-
    Abstract: The spread of SARS-CoV-2, which causes the disease COVID-19, is difficult to control as some positive individuals, capable of transmitting the disease, can be asymptomatic. Thus, it remains critical to generate noninvasive, inexpensive COVID-19 screening systems. Two such methods include detection canines and analytical instrumentation, both of which detect volatile organic compounds associated with SARS-CoV-2. In this study, the performance of trained detection dogs is compared to a noninvasive headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) approach to identifying COVID-19 positive individuals. Five dogs were trained to detect the odor signature associated with COVID-19. They varied in performance, with the two highest-performing dogs averaging 88% sensitivity and 95% specificity over five double-blind tests. The three lowest-performing dogs averaged 46% sensitivity and 87% specificity. The optimized linear discriminant analysis (LDA) model, developed using HS-SPME-GC-MS, displayed a 100% true positive rate and a 100% true negative rate using leave-one-out cross-validation. However, the non-optimized LDA model displayed difficulty in categorizing animal hair-contaminated samples, while animal hair did not impact the dogs’ performance. In conclusion, the HS-SPME-GC-MS approach for noninvasive COVID-19 detection more accurately discriminated between COVID-19 positive and COVID-19 negative samples; however, dogs performed better than the computational model when non-ideal samples were presented.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662125-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Metals, MDPI AG, Vol. 11, No. 4 ( 2021-04-05), p. 593-
    Abstract: The knowledge of alloy–process–structure–property relationships is of particular interest for several safety-critical brazed components and requires a detailed characterization. Thus, three different nickel-based brazing filler metals were produced with varying chromium and molybdenum content and were used to braze butt joints of the austenitic stainless steel AISI 304L under vacuum. Two holding times were used to evaluate diffusion-related differences, resulting in six specimen variations. Significant microstructural changes due to the formation and location of borides and silicides were demonstrated. Using X-ray diffraction, alloy-dependent residual stress gradients from the brazing seam to the base material were determined and the thermal-induced residual stresses were shown through simulations. For mechanical characterization, impact tests were carried out to determine the impact toughness, as well as tensile tests at low and high strain rates to evaluate the strain-rate-dependent tensile strength of the brazed joints. Further thermal, electrical, and magnetic measurements enabled an understanding of the deformation mechanisms. The negative influence of brittle phases in the seam center could be quantified and showed the most significant effects under impact loading. Fractographic investigations subsequently enabled an enhanced understanding of the fracture mechanisms.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Metals Vol. 11, No. 7 ( 2021-06-23), p. 1004-
    In: Metals, MDPI AG, Vol. 11, No. 7 ( 2021-06-23), p. 1004-
    Abstract: In the recent past, several researchers have successfully modeled the complex fatigue behavior of planar twin-roll cast AZ31B alloy sheets. Complex components are usually hot-bent, whereby the microstructure in the hot-bent areas changes significantly. However, studies on the fatigue behavior of hot-bent magnesium alloys are currently lacking. Therefore, a novel, uniaxial hot-bent specimen was developed and optimized with finite element method simulations. Microstructural analyses with the electron backscatter diffraction method reveal that the hot-bending process changes the texture and increases the Schmid factor for basal slip in rolling and transverse direction of the sheet. In the subsequent quasi-static tension and compression tests, anisotropic and asymmetric yield stresses, lower Young’s moduli compared with the as-received material and macroscopic bands of twinned grains are obtained. Finally, the study proves that the recently proposed concept of highly strained volume can accurately estimate the lifetime, even by combining the as-received and hot-bent material in one fatigue model.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Agronomy, MDPI AG, Vol. 12, No. 5 ( 2022-05-23), p. 1243-
    Abstract: The assessment of soil capability in retaining and transporting chemical substances is necessary, especially currently, with the overuse of chemical products for crop production. Depending on the soil properties, these chemicals may bound on soil particles or release and transport in the soil solution. In this study, we developed maps of the capability of soil to retain and transport Al3+, thereby evaluating the main soil factors affecting Al3+ fate in the agricultural land of Trang Bom District, Dong Nai Province, Vietnam. Information and data of the factors slope, soil texture, pH, organic matter, and ferrallitisation were processed and analyzed. The GIS tool was applied in combination with the analytical hierarchical process (AHP) to create the maps. Four hundred simulation runs were performed for criteria weight sensitivity analysis to explore the dependency of the resultant maps on the weights of the input factors. Sampling soil data were used to validate the accuracy of information given by the resultant maps. Results from the two maps show that the soils in the area have high capability in retaining and transporting Al3+. Ninety nine percent of the soils in the area have medium to high capability of Al3+ retention and about 65% of the soils have medium to high capability of transporting Al3+. For the agricultural land, about 65% of the land ranked as having a high to very high soil Al3+ retention capability and about 58% of the land ranked as having a medium to high capability of transporting Al3+. These maps can support the process of decision-making in identifying the appropriate dose and frequency of the chemical products that are applied on each soil capability zone; in this case study, the products contain aluminum. The accumulation of Al3+ in the soil, especially in the high Al3+ retention capability soil, can cause soil degradation and can cause negative effects on plant growth.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Cells Vol. 8, No. 2 ( 2019-02-16), p. 162-
    In: Cells, MDPI AG, Vol. 8, No. 2 ( 2019-02-16), p. 162-
    Abstract: Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cells, MDPI AG, Vol. 8, No. 3 ( 2019-03-22), p. 276-
    Abstract: CD44 is a multifunctional adhesion molecule typically upregulated in malignant, inflamed and injured tissues. Due to its ability to bind multiple ligands present in the tumor microenvironment, it promotes multiple cellular functions related to tumorigenesis. Recent data has shown that CD44 and its principal ligand hyaluronan (HA) are carried by extracellular vesicles (EV) derived from stem and tumor cells, but the role of CD44 in EV shedding has not been studied so far. To answer this question, we utilized CD44-negative human gastric carcinoma cell line MKN74 manipulated to stably express CD44 standard form (CD44s). The effect of CD44s expression on HA metabolism, EV secretion, morphology and growth of these cells was studied. Interestingly, HAS2 and HYAL2 expression levels were significantly upregulated in CD44s-expressing cells. Cell-associated HA levels were significantly increased, while HA levels in the culture medium of CD44s-positive cells was lower compared to CD44s-negative MOCK cells. CD44s expression had no significant effect on the proliferation capacity of cells, but cells showed diminished contact inhibition. Superresolution imaging revealed that CD44s and HA were accumulated on filopodia and EVs secreted from CD44s-positive cells, but no differences in total numbers of secreted EV between CD44s-negative and -positive cells was detected. In 3D cultures, CD44s-expressing cells had an enhanced invasion capacity in BME gel and increased spheroidal growth when cultured in collagen I gel. No significant differences in mitotic activity, tumor size or morphology were detected in CAM assays. However, a significant increase in HA staining coverage was detected in CD44s-positive tumors. Interestingly, CD44s-positive EVs embedded in HA-rich matrix were detected in the stromal areas of tumors. The results indicate that CD44s expression significantly increases the HA binding capacity of gastric cancer cells, while the secreted HA is downregulated. CD44s is also carried by EVs secreted by CD44s-expressing cells. These findings highlight the potential usefulness of CD44s and its ligands as multipurpose EV biomarkers, because they are upregulated in inflammatory, injured, and cancer cells and accumulate on the surface of EVs secreted in these situations.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages