Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (3)
  • Copernicus GmbH  (3)
  • 1
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 21, No. 1 ( 2017-01-26), p. 495-513
    Abstract: Abstract. Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa–θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2100610-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: SOIL, Copernicus GmbH, Vol. 4, No. 1 ( 2018-03-15), p. 83-92
    Abstract: Abstract. The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.
    Type of Medium: Online Resource
    ISSN: 2199-398X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2834892-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Earth System Science Data, Copernicus GmbH, Vol. 13, No. 6 ( 2021-06-04), p. 2529-2539
    Abstract: Abstract. The Schäfertal Hillslope site is part of the TERENO Harz/Central German Lowland Observatory, and its soil water dynamics are being monitored intensively as part of an integrated, long-term, multi-scale, and multi-temporal research framework linking hydrological, pedological, atmospheric, and biodiversity-related research to investigate the influences of climate and land use change on the terrestrial system. Here, a new soil monitoring network, indicated as STH-net, has been recently implemented to provide high-resolution data about the most relevant hydrological variables and local soil properties. The monitoring network is spatially optimized, based on previous knowledge from soil mapping and soil moisture monitoring, in order to capture the spatial variability in soil properties and soil water dynamics along a catena across the site as well as in depth. The STH-net comprises eight stations instrumented with time-domain reflectometry (TDR) probes, soil temperature probes, and monitoring wells. Furthermore, a weather station provides data about the meteorological variables. A detailed soil characterization exists for locations where the TDR probes are installed. All data have been measured at a 10 min interval since 1 January 2019. The STH-net is intended to provide scientists with data needed for developing and testing modelling approaches in the context of vadose-zone hydrology at spatial scales ranging from the pedon to the hillslope. The data are available from the EUDAT portal (https://doi.org/10.23728/b2share.82818db7be054f5eb921d386a0bcaa74, Martini et al., 2020).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2475469-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages