Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hydrogeology Journal, Springer Science and Business Media LLC, Vol. 30, No. 1 ( 2022-02), p. 163-180
    Abstract: A redução de nitrato constitui um importante mecanismo natural para mitigar a contaminação generalizada e persistente de nitrato dos recursos hídricos subterrâneos. Em aquíferos fraturados, no entanto, a abundância e acessibilidade de doadores de elétrons e sua correlação espacial com os caminhos do fluxo de água subterrânea são frequentemente mal compreendidos. Neste estudo, o potencial de redução de nitrato de um aquífero carbonato fraturado no Muschelkalk Superior do SO da Alemanha foi investigado, onde a desnitrificação é devido à oxidação do ferro ferroso e enxofre reduzido. As análises petrográficas de amostras de rocha revelaram concentrações de pirita sin-sedimentar e diageneticamente formada variando de 1 a 4% em peso, com apenas pequenas diferenças entre os diferentes tipos de fácies. Ferro ferroso adicional está disponível em dolomitas de sela (até 2.6% em peso), que provavelmente foram formadas por percolação tectonicamente induzida de fluidos hidrotérmicos de baixa temperatura. O registro de furos em poços de água subterrânea (medidor de vazão, vídeo, gama) indica que a maior parte do fluxo de água subterrânea ocorre ao longo de planos de estratificação carstificados parcialmente localizados dentro de dolomitos do cardume e fácies de fundo de poço. A alta porosidade (15–30%) dessas fácies facilita a troca molecular difusiva de solutos entre os caminhos de fluxo nas fraturas e os minerais reativos na matriz de poros. Fácies de alta porosidade, juntamente com as fraturas hidraulicamente ativas com precipitados de pirita ou dolomita em sela, constituem as zonas de maior potencial de redução de nitrato dentro do aquífero. Estimativas baseadas em modelo de balanços aceitador/doador de elétrons indicam que o potencial de redução de nitrato que protege os poços de abastecimento de água aumenta com o aumento da porosidade da matriz de rocha e diminui com o aumento da condutividade hidráulica (ou abertura de fratura efetiva) e espaçamento da rede de fratura.
    Type of Medium: Online Resource
    ISSN: 1431-2174 , 1435-0157
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1481470-5
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 16 ( 2021-07-27)
    Abstract: Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO 3 − /Fe(II) ratio of 0.2, with N 2 and N 2 O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N 2 O and N 2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages