Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lemke, Dennis  (2)
  • Liao, Zijie  (2)
Type of Medium
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Water Resources Research Vol. 49, No. 5 ( 2013-05), p. 3024-3037
    In: Water Resources Research, American Geophysical Union (AGU), Vol. 49, No. 5 ( 2013-05), p. 3024-3037
    Abstract: Knowledge about the strength and travel times of hyporheic exchange is vital to predict reactive transport and biogeochemical cycling in streams. In this study, we outline how to perform and analyze stream tracer tests using pulse injections of fluorescein as conservative and resazurin as reactive tracer, which is selectively transformed to resorufin when exposed to metabolically active zones, presumably located in the hyporheic zone. We present steps of preliminary data analysis and apply a conceptually simple mathematical model of the tracer tests to separate effects of in‐stream transport from hyporheic exchange processes. To overcome the dependence of common parameter estimation schemes on the initial guess, we derive posterior parameter probability density functions using an adaptive Markov chain Monte Carlo scheme. By this, we can identify maximum‐likelihood parameter values of in‐stream transport, strength of hyporheic exchange, distribution of hyporheic travel times as well as sorption and reactivity coefficients of the hyporheic zone. We demonstrate the approach by a tracer experiment at River Goldersbach in southern Germany (60 L/s discharge). In‐stream breakthrough curves were recorded with online fluorometers and jointly fitted to simulations of a one‐dimensional reactive transport model assuming an exponential hyporheic travel‐time distribution. The findings show that the additional analysis of resazurin not only improved the physical basis of the modeling, but was crucial to differentiate between surface transport and hyporheic transient storage of stream solutes. Parameter uncertainties were usually small and could not explain parameter variability between adjacent monitoring stations. The latter as well as a systematic underestimation of the tailing are due to structural errors of the model, particularly the exponential hyporheic travel‐time distribution. Mean hyporheic travel times were in the range of 12 min, suggesting that small streambed structures dominate hyporheic exchange at the study site.
    Type of Medium: Online Resource
    ISSN: 0043-1397 , 1944-7973
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2029553-4
    detail.hit.zdb_id: 5564-5
    SSG: 13
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Water Resources Research Vol. 49, No. 6 ( 2013-06), p. 3406-3422
    In: Water Resources Research, American Geophysical Union (AGU), Vol. 49, No. 6 ( 2013-06), p. 3406-3422
    Type of Medium: Online Resource
    ISSN: 0043-1397
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2029553-4
    detail.hit.zdb_id: 5564-5
    SSG: 13
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages