Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (2)
  • 1
    In: Biochemical Journal, Portland Press Ltd., Vol. 413, No. 1 ( 2008-07-01), p. 143-150
    Abstract: HDACs (histone deacetylases) are considered to be among the most important enzymes that regulate gene expression in eukaryotic cells. In general, increased levels of histone acetylation are associated with increased transcriptional activity, whereas decreased levels are linked to repression of gene expression. HDACs associate with a number of cellular oncogenes and tumour-suppressor genes, leading to an aberrant recruitment of HDAC activity, which results in changes of gene expression, impaired differentiation and excessive proliferation of tumour cells. Therefore HDAC inhibitors are efficient anti-proliferative agents in both in vitro and in vivo pre-clinical models of cancer, making them promising anticancer therapeutics. In the present paper, we present the results of a medium-throughput screening programme aiming at the identification of novel HDAC inhibitors using HDAH (HDAC-like amidohydrolase) from Bordetella or Alcaligenes strain FB188 as a model enzyme. Within a library of 3719 compounds, several new classes of HDAC inhibitor were identified. Among these hit compounds, there were also potent inhibitors of eukaryotic HDACs, as demonstrated by an increase in histone H4 acetylation, accompanied by a decrease in tumour cell metabolism in both SHEP neuroblastoma and T24 bladder carcinoma cells. In conclusion, screening of a compound library using FB188 HDAH as model enzyme identified several promising new lead structures for further development.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2008
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Portland Press Ltd. ; 1998
    In:  Biochemical Journal Vol. 329, No. 3 ( 1998-02-01), p. 609-613
    In: Biochemical Journal, Portland Press Ltd., Vol. 329, No. 3 ( 1998-02-01), p. 609-613
    Abstract: The human histone H3.3B gene belongs to the group of replacement histone genes, which are up-regulated during differentiation of cells. Here we provide evidence that a cAMP response element/PMA response element (CRE/TRE) located in the proximal promoter contributes to the expression of the H3.3B gene. (1) Band shift and supershift analysis demonstrated the binding of AP-1 and transcription factors of the CRE-binding protein/activating-transcription-factor family to the H3.3B CRE/TRE. (2) Treatment of HeLa cells with PMA led to a 4-fold increase in H3.3B mRNA levels within 2 h, whereas transcription of the cell cycle-dependent H3 histone genes remained constant. In contrast with PMA, cAMP did not affect H3.3B transcription. (3) PMA treatment of cells transiently transfected with H3.3B promoter constructs linked to a luciferase gene caused a 4-5-fold increase in reporter gene activity, whereas mutation of the CRE/TRE element abolished the PMA response. These results demonstrate that activation of the protein kinase C pathway by PMA results in an early up-regulation of H3.3B gene expression via the CRE/TRE element. Furthermore treatment with PMA apparently leads to differential induction of H3 histone subtype genes and this in turn can result in a remodelling of chromatin structure of cells before or during differentiation processes.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 1998
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages