feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Weller, Ulrich  (3)
  • 2020-2024  (3)
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  SOIL Vol. 8, No. 2 ( 2022-07-29), p. 507-515
    In: SOIL, Copernicus GmbH, Vol. 8, No. 2 ( 2022-07-29), p. 507-515
    Abstract: Abstract. Soil structure in terms of the spatial arrangement of pores and solids is highly relevant for most physical and biochemical processes in soil. While this was known for a long time, a scientific approach to quantify soil structural characteristics was also missing for a long time. This was due to its buried nature but also due to the three-dimensional complexity. During the last two decades, tools to acquire full 3D images of undisturbed soil became more and more available and a number of powerful software tools were developed to reduce the complexity to a set of meaningful numbers. However, the standardization of soil structure analysis for a better comparability of the results is not well developed and the accessibility of required computing facilities and software is still limited. At this stage, we introduce an open-access Soil Structure Library (https://structurelib.ufz.de/, last access: 22 July 2022) which offers well-defined soil structure analyses for X-ray CT (computed tomography) data sets uploaded by interested scientists. At the same time, the aim of this library is to serve as an open data source for real pore structures as developed in a wide spectrum of different soil types under different site conditions all over the globe, by making accessible the uploaded binarized 3D images. By combining pore structure metrics with essential soil information requested during upload (e.g., bulk density, texture, organic carbon content), this Soil Structure Library can be harnessed towards data mining and development of soil-structure-based pedotransfer functions. In this paper, we describe the architecture of the Soil Structure Library and the provided metrics. This is complemented by an example of how the database can be used to address new research questions.
    Type of Medium: Online Resource
    ISSN: 2199-398X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2834892-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: European Journal of Soil Science, Wiley, Vol. 73, No. 1 ( 2022-01)
    Abstract: Soil functions, including climate regulation and the cycling of water and nutrients, are of central importance for a number of environmental issues of great societal concern. To understand and manage these functions, it is crucial to be able to quantify the structure of soils, now increasingly referred to as their “architecture,” as it constraints the physical, chemical and biological processes in soils. This quantification was traditionally approached from two different angles, one focused on aggregates of the solid phase, and the other on the pore space. The recent development of sophisticated, non‐disturbing imaging techniques has led to significant progress in the description of soil architecture, in terms of both the pore space and the spatial configuration of mineral and organic materials. We now have direct access to virtually all aspects of soil architecture. In the present article, we review how this affects the perception of soil architecture specifically when trying to describe the functions of soils. A key conclusion of our analysis is that soil architecture, in that context, imperatively needs to be explored in its natural state, with as little disturbance as possible. The same requirement applies to the key processes taking place in the hierarchical soil pore network, including those contributing to the emergence of a heterogeneous organo‐mineral soil matrix by various mixing processes, such as bioturbation, diffusion, microbial metabolism and organo‐mineral interactions. Artificially isolated aggregates are fundamentally inappropriate for deriving conclusions about the functioning of an intact soil. To fully account for soil functions, we argue that a holistic approach that centres on the pore space is mandatory while the dismantlement of soils into chunks may still be carried out to study the binding of soil solid components. In the future, significant progress is expected along this holistic direction, as new, advanced technologies become available. Highlights We highlight the crucial importance of the temporal dynamics of soil architecture for biological activity and carbon turnover. We reconcile controversial concepts relative to how soil architecture is formed and reshaped with time. Soil is demonstrated to be a heterogeneous porous matrix and not an assembly of aggregates. Biological and physical mixing processes are key for the formation and dynamics of soil architecture.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: European Journal of Soil Science, Wiley, Vol. 74, No. 5 ( 2023-09)
    Abstract: The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages