feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (5)
  • Linguistics  (5)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 38 ( 2015-09-22)
    Abstract: Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC -positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 15 ( 2014-04-15)
    Abstract: The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1–15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 18 ( 2014-05-06), p. 6768-6773
    Abstract: The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail . These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 42 ( 2020-10-20), p. 26328-26339
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 42 ( 2020-10-20), p. 26328-26339
    Abstract: Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPβ as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPβ in CD11c + MHCII hi DCs, gene expression profiles of splenic C/EBPβ −/− DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c + MHCII hi CD64 + DC compartment was also increased, suggesting that C/EBPβ deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPβ could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPβ −/− bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPβ/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPβ plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 7 ( 2002-04-02), p. 4550-4555
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 7 ( 2002-04-02), p. 4550-4555
    Abstract: Lymphoblastoid cell lines, generated by immortalization of normal B cells by Epstein–Barr virus (EBV) in vitro , have strong antigen-presenting capacity, are sensitive to EBV-specific cytotoxic T cells, and are highly allostimulatory in mixed lymphocyte culture. By contrast, EBV-positive Burkitt lymphoma (BL) cells are poor antigen presenters, are not recognized by EBV-specific cytotoxic T cells, and are poorly allostimulatory, which raises the question of whether immunological pressure exerted during BL pathogenesis in vivo has selected for a ‘nonimmunogenic’ tumor phenotype. The present work addresses this question by examining the immunogenicity/antigenicity of cell lines, generated by conversion of a conditionally immortalized lymphoblastoid cell line to permanent growth independent of EBV-latent proteins by introduction of a constitutively active or tetracycline-regulated c- myc gene (A1 and P493–6 cells, respectively). Compared with its parental lymphoblastoid cell line, A1 cells showed many of the features of the nonimmunogenic BL phenotype, namely poor allostimulatory activity, poor antigen-presenting function associated with impaired proteasomal activity, down-regulation of peptide transporter, reduced HLA class I expression, and an inability to present endogenously expressed EBV-latent proteins to cytotoxic T cells. P493–6 cells, when grown in the presence of estrogen with the exogenous c- myc gene switched off, were strongly immunogenic. The cells had lost their immunogenic potential, however, when grown on a c- myc -driven proliferation program in the absence of estrogen. Deregulation of c- myc , a step central to the development of uncontrolled BL cell growth in vivo , can thus impose a nonimmunogenic phenotype on proliferating human B cells in the absence of any immune pressure.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages