Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (13)
  • von Deimling, Andreas  (13)
Type of Medium
Publisher
  • American Association for Cancer Research (AACR)  (13)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3687-3687
    Abstract: Pediatric glioblastoma (GBM) belongs to the comparably small group of childhood malignancies for which cure is still an exception. Histologically indistinguishable from their adult counterparts, they carry a similar dismal prognosis. Whereas genetic and epigenetic properties have been extensively studied in adult tumors, little is known about the molecular characteristics of pediatric GBM, although some reports indicate that it is likely a different entity in terms of tumor biology and molecular genetics. Thus, this study aimed to elucidate disease-defining molecular lesions by determining genomic, transcriptomic and epigenetic alteration profiles. Using an integrative genomics approach combining multiple screening strategies, we investigated primary tumor samples from 55 childhood GBM for copy-number aberrations (CNA), transcriptomic and epigenetic changes, complemented by sequencing analysis of TP53, IDH1/2 and further candidate genes. Methylome analysis revealed the existence of five separate clusters of childhood GBM with distinct molecular and clinico-pathological features. Methylation patterns correlated with novel recurrent, subgroup-specific driver mutations unique to the pediatric population, and with clearly distinguishable transcriptomic profiles. Integration of methylation and gene expression data suggested that different tumor subgroups are derived from at least two distinct precursor-cell populations, one of them without any signs of neural lineage commitment. Furthermore, distinct clusters were highly associated with the presence of balanced (13%) or aneuploid (33%) genomic profiles or with cases displaying highly-rearranged genomes (11%), or various high-level focal amplifications (43%) of known and novel oncogenes. Similar to adults, CNA frequently targeted GBM core signaling pathways such as RTK/PI3K, p53 and RB signaling. TP53 loss-of-function mutations were present in 46% of pediatric GBM. IDH1 mutations were detected in only six patients (11%), but these tumors displayed concerted hypermethylation at a large number of loci, resembling a CpG island methylator phenotype (CIMP). Relevant findings are being validated by immunohistochemistry or FISH analysis in an independent, large-scale cohort representing 130 uniformly-treated pediatric GBM. This study, one of the largest cohorts of pediatric GBM investigated for molecular alterations to date, describes frequent genetic and epigenetic features of this devastating disease and further emphasizes and differences between adult and pediatric GBM. The identification of distinct molecular subgroups and commonly altered pathways will help to characterize molecular biomarkers for improved prognostic assessment and risk-adapted treatment stratification, and may facilitate the development of suitable in vitro and in vivo models for defining novel therapeutic strategies. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3687. doi:1538-7445.AM2012-3687
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 1178-1178
    Abstract: Pilocytic astrocytoma (PA) constitutes the most common brain tumor in children. Recently, we and others have demonstrated that tandem duplications at chromosome 7q34 targeting the BRAF locus define a hallmark genetic lesion in PA development, resulting in BRAF fusion genes and constitutive activation of the MAPK signaling pathway. NF1, KRAS and activating BRAF mutations as well as RAF1 tandem duplications were identified as alternative mechanisms mostly in tumors without BRAF duplication. To identify BRAF and RAF1 fusion genes and to discover novel fusion partners, we screened a total of 62 PA by using multiplex and long-distance inverse (LDI) PCR. Direct genomic sequencing was performed for detailed breakpoint mapping and to detect activating mutations. All translocations identified by PCR-based methods were validated by fluorescence in situ hybridization. Overall, gene fusions targeting RAF kinases occurred in 71% (44/62) of PA. Sequencing of cDNA of the retrieved fusion transcripts confirmed all previously reported variants of the KIAA1549-BRAF fusion gene. Further detailed analysis of genomic DNA mapped 95% (42/44) of the breakpoints to the same breakpoint cluster region in intron 8 of the BRAF gene. Moreover, we identified the first non-intronic breakpoint in exon 8 of BRAF and detected one fusion gene product which additionally displayed an internal rearrangement of the remaining BRAF fragment. Fusion of SRGAP3 to RAF1 in two cases and activating mutations of BRAF, KRAS or NF1 in eleven cases were observed as alternative mechanisms of MAPK activation in tumors in which no BRAF or RAF1 duplication was detected. Interestingly, LDI-PCR analysis revealed fusion of BRAF to the first intron of the yet uncharacterized gene, FAM131B. Notably, all fusion events replaced the N-terminal auto-inhibitory domain of the respective RAF kinase with segments of the complementary fusion partner and retained the complete, in-frame coding sequence for the kinase domain enabling constitutive activation of the RAF kinase protein. In summary, we identified fusion events targeting RAF kinase genes to be the predominant cause for aberrant MAPK activation in PA, accompanied by activating mutations as a complementary mechanism. This study significantly extends our knowledge of the high frequency and striking similarity of rearrangements resulting in KIAA1549-BRAF or SRGAP3-RAF1 fusion genes by discovering hitherto unreported fusion variants. Most importantly, we identified a novel fusion oncogene between BRAF and the so far uncharacterized gene FAM131B, representing the first report of a BRAF fusion partner in PA other than KIAA1549. Taken together, our results strengthen the role of BRAF fusion genes as a hallmark of PA tumorigenesis and highlight the potential of RAF kinase fusion products as a specific marker for PA and a promising tumor-specific therapeutic target which may open the avenue for developing novel treatment strategies in the future. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1178.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 20 ( 2010-10-15), p. 8003-8014
    Abstract: Medulloblastoma is the most common malignant pediatric brain tumor and is one of the leading causes of cancer-related mortality in children. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk medulloblastoma. Through mRNA expression profiling, we identified LIM and SH3 protein 1 (LASP1) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. In an independent validation cohort of 101 medulloblastoma samples, the abundance of LASP1 mRNA was significantly associated with 17q gain, metastatic dissemination, and unfavorable outcome. LASP1 protein expression was analyzed by immunohistochemistry in a large cohort of patients (n = 207), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival. In vitro experiments in medulloblastoma cell lines showed a strong reduction of cell migration, increased adhesion, and decreased proliferation upon LASP1 knockdown by small interfering RNA–mediated silencing, further indicating a functional role for LASP1 in the progression and metastatic dissemination of medulloblastoma. Cancer Res; 70(20); 8003–14. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 6 ( 2019-03-15), p. 1851-1866
    Abstract: Pilocytic astrocytoma is the most common childhood brain tumor, characterized by constitutive MAPK activation. MAPK signaling induces oncogene-induced senescence (OIS), which may cause unpredictable growth behavior of pilocytic astrocytomas. The senescence-associated secretory phenotype (SASP) has been shown to regulate OIS, but its role in pilocytic astrocytoma remains unknown. Experimental Design: The patient-derived pilocytic astrocytoma cell culture model, DKFZ-BT66, was used to demonstrate presence of the SASP and analyze its impact on OIS in pilocytic astrocytoma. The model allows for doxycycline-inducible switching between proliferation and OIS. Both states were studied using gene expression profiling (GEP), Western blot, ELISA, and cell viability testing. Primary pilocytic astrocytoma tumors were analyzed by GEP and multiplex assay. Results: SASP factors were upregulated in primary human and murine pilocytic astrocytoma and during OIS in DKFZ-BT66 cells. Conditioned medium induced growth arrest of proliferating pilocytic astrocytoma cells. The SASP factors IL1B and IL6 were upregulated in primary pilocytic astrocytoma, and both pathways were regulated during OIS in DKFZ-BT66. Stimulation with rIL1B but not rIL6 reduced growth of DKFZ-BT66 cells and induced the SASP. Anti-inflammatory treatment with dexamethasone induced regrowth of senescent cells and inhibited the SASP. Senescent DKFZ-BT66 cells responded to senolytic BCL2 inhibitors. High IL1B and SASP expression in pilocytic astrocytoma tumors was associated with favorable progression-free survival. Conclusions: We provide evidence for the SASP regulating OIS in pediatric pilocytic astrocytoma, with IL1B as a relevant mediator. SASP expression could enable prediction of progression in patients with pilocytic astrocytoma. Further investigation of the SASP driving the unpredictable growth of pilocytic astrocytomas, and its possible therapeutic application, is warranted.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 9 ( 2021-09-01), p. 2230-2247
    Abstract: Molecular groups of supratentorial ependymomas comprise tumors with ZFTA–RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation–based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion–positive tumors. Significance: ZFTA–RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion–positive tumors, such as GLI2. This article is highlighted in the In This Issue feature, p. 2113
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 1 ( 2022-01-01), p. 116-128
    Abstract: International consensus and the 2021 WHO classification recognize eight molecular subgroups among non-WNT/non-SHH (Group 3/4) medulloblastoma, representing approximately 60% of tumors. However, very few clinical centers worldwide possess the technical capabilities to determine DNA methylation profiles or other molecular parameters of high risk for group 3/4 tumors. As a result, biomarker-driven risk stratification and therapy assignment constitutes a major challenge in medulloblastoma research. Here, we identify an IHC marker as a clinically tractable method for improved medulloblastoma risk stratification. Experimental Design: We bioinformatically analyzed published medulloblastoma transcriptomes and proteomes identifying as a potential biomarker TPD52, whose IHC prognostic value was validated across three group 3/4 medulloblastoma clinical cohorts (n = 387) treated with conventional therapies. Results: TPD52 IHC positivity represented a significant independent predictor of early relapse and death for group 3/4 medulloblastoma [HRs between 3.67 and 26.7; 95% confidence interval (CI) between 1.00 and 706.23; P = 0.05, 0.017, and 0.0058]. Cross-validated survival models incorporating TPD52 IHC with clinical features outperformed existing state-of-the-art risk stratification schemes, and reclassified approximately 50% of patients into more appropriate risk categories. Finally, TPD52 immunopositivity was a predictive indicator of poor response to chemotherapy [HR, 12.66; 95% CI, 3.53–45.40; P & lt; 0.0001], suggesting important implication for therapeutic choices. Conclusions: This study redefines the approach to risk stratification in group 3/4 medulloblastoma in global practice. Because integration of TPD52 IHC in classification algorithms significantly improved outcome prediction, this test could be rapidly adopted for risk stratification on a global scale, independently of advanced but technically challenging molecular profiling techniques.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 16, No. 12 ( 2010-06-15), p. 3240-3252
    Abstract: Purpose: Medulloblastomas are the most common malignant brain tumors in childhood. Survivors suffer from high morbidity because of therapy-related side effects. Thus, therapies targeting tumors in a specific manner with small molecules such as histone deacetylase (HDAC) inhibitors are urgently warranted. This study investigated the expression levels of individual human HDAC family members in primary medulloblastoma samples, their potential as risk stratification markers, and their roles in tumor cell growth. Experimental Design: Gene expression arrays were used to screen for HDAC1 through HDAC11. Using quantitative real time reverse transcriptase-PCR and immunohistochemistry, we studied the expression of HDAC5 and HDAC9 in primary medulloblastoma samples. In addition, we conducted functional studies using siRNA-mediated knockdown of HDAC5 and HDAC9 in medulloblastoma cells. Results: HDAC5 and HDAC9 showed the highest expression in prognostically poor subgroups. This finding was validated in an independent set of medulloblastoma samples. High HDAC5 and HDAC9 expression was significantly associated with poor overall survival, with high HDAC5 and HDAC9 expression posing an independent risk factor. Immunohistochemistry revealed a strong expression of HDAC5 and HDAC9 proteins in most of all primary medulloblastomas investigated. siRNA-mediated knockdown of HDAC5 or HDAC9 in medulloblastoma cells resulted in decreased cell growth and cell viability. Conclusion: HDAC5 and HDAC9 are significantly upregulated in high-risk medulloblastoma in comparison with low-risk medulloblastoma, and their expression is associated with poor survival. Thus, HDAC5 and HDAC9 may be valuable markers for risk stratification. Because our functional studies point toward a role in medulloblastoma cell growth, HDAC5 and HDAC9 may potentially be novel drug targets. Clin Cancer Res; 16(12); 3240–52. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 31-31
    Abstract: Intracranial ependymoma comprises the second most common malignant brain tumor in childhood. The prognosis of these tumors remains generally poor and its biological behavior is unpredictable based on current stratification approaches. Neither clinical variables nor histopathological grading or molecular markers have so far been successful in defining a well circumscribed group of high-risk patients. Thus, an innovative staging model for ependymoma is desperately needed. We studied 122 samples from patients with intracranial ependymoma with a median follow-up of circa 8 years by genome-wide assessment of DNA copy-number aberrations using array-CGH (10K BAC array). Aberrations with a potential prognostic value were validated in an independent cohort of 170 patients by FISH analysis. Consecutively, we investigated genome-wide mRNA expression profiling (Agilent 44k) in 65 primary ependymomas and performed unsupervised clustering to identify potential transcriptome-based subgroups. We compared these findings with the previously identified DNA copy-number profiles. For validation of single molecular markers, selected candidate genes were investigated by QRT-PCR on transcriptional level, and protein expression was measured by immunohistochemistry on tissue microarrays (n=170). We were able to define a novel molecular staging system comprised of three genetically distinct subgroups of ependymoma based on DNA copy-number aberrations: i) a low risk group (34% of patients) including tumors with gain of chromosomes 9, 15q, 18, or loss of chromosome 6, or a combination thereof with patients showing a 5-year OS of 100%; ii) an intermediate risk group (41% of patients) characterized by a balanced cytogenetic profile especially for aberrations of chromosomes 1q, 9, 15q, 18, 6 and without a homozygous deletion of CDKN2A which was associated with a 5-year OS of 77%; iii) a high risk group (25% of patients) defined by tumors harbouring a gain of 1q and/or a homozygous deletion of CDKN2A, which was concurrent with a 5-year OS of only 33%. Interestingly, these cytogenetic risk-groups showed a significant overlap with transcriptome-based subgroups identified by unsupervised clustering. Thus, we aimed at the identification of interesting candidate genes which show subgroup-specific expression and have the potential to be used as surrogate marker for certain biological subgroups. The most robust subgroup-specific molecular markers for poor and good outcome were SHC1 and WDR16, respectively. In summary, we could decipher a novel stratification model for intracranial ependymoma consisting of three subgroups based on cytogenetic aberrations. By integrative genomics looking at DNA aberrations and mRNA levels in a large subset of samples, we were able to identify novel biomarkers in ependymoma, which have high potential to be useful for stratifying patients in future clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 31.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 1424-1424
    Abstract: Medulloblastoma comprises the most common malignant brain tumor in childhood. Recently, integrated genomic approaches revealed four major biological disease variants: WNT (wingless), SHH (sonic hedgehog), group 3, and group 4. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk non-WNT/non-SHH medulloblastoma. Thus, novel therapeutic options for these patients are urgently warranted. Through mRNA expression profiling of 64 primary tumor samples, we identified potassium inwardly-rectifying channel J2 (KCNJ2) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. Notably, recent reports have linked deregulation of voltage-dependent ion channels to the development of other types of cancer. We first validated our microarray findings on KCNJ2 transcript levels using quantitative real-time PCR. High KCNJ2 transcript levels were significantly associated with non-WNT/non-SHH grouping, anaplastic histology, metastatic dissemination, and poor clinical outcome. KCNJ2 protein expression was analyzed by immunohistochemistry in a large cohort of patients (n=199), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival (p & lt;0.0001). To functionally validate the potential role of KCNJ2 in medulloblastoma biology, we performed knockdown experiments by small interfering RNA-mediated silencing in two well characterized medulloblastoma cell lines. Knockdown of KCNJ2 resulted in a reduced proliferation rate and induction of apoptosis. Furthermore, treatment of the medulloblastoma cell lines with Amiodarone and SR 59230A, two inhibitors of this class of Kir channels, phenocopied these promising anti-proliferative and pro-apoptotic effects in a time- and dose-dependent manner. Whole cell patch clamp results revealed a remarkable current reduction upon inhibitor treatment with SR 59230A. In summary, we could delineate KCNJ2 immunopositivity as an independent biomarker for medulloblastoma with dismal prognosis. Thus, pharmacological inhibition of this candidate gene may constitute a new therapeutic option for patients with high-risk medulloblastomas. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1424. doi:1538-7445.AM2012-1424
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 1432-1432
    Abstract: Brain tumors are the most common cause of cancer-related death in childhood. Ependymomas, are the third most common pediatric brain tumor. The disease remains incurable for about 45% of patients even after gross total resection and radiotherapy. Despite showing a very homogeneous histological picture, ependymomas display distinct molecular behavior, which supports the existence of several independent entities of the disease. We examined two non-overlapping cohorts of 102 and 75 ependymomas by mRNA expression profiling, on two different array platforms (Affymetrix, Agilent). When performing multiple statistical clustering methods (unsupervised consensus NMF and consensus HCL), we could consistently identify three major clusters, including two subgroups of posterior fossa (PF) ependymoma, a variant common in children and associated with heterogeneous clinical outcome. Subgroup-specific chromosome aberrations of PF tumors were detected by aCGH, and biological signaling pathways distinguishing PF subgroups were identified by gene set enrichment analysis and visualized in Cytoscape. We validated the most significantly classifying markers of each subgroup by immunohistochemistry on a tissue microarray containing an independent set of 265 PF ependymomas. Our findings delineate two subgroups of PF ependymoma (groups A and B) which are demographically, transcriptionally, genetically, and clinically distinct. Group A patients are younger, have laterally located tumors with a balanced genome, more frequently develop secondary metastases and are much more likely to have an extremely poor outcome as compared with group B patients. Based on a multi-variate Cox proportional-hazards model, our identified markers have the strongest independent prognostic value among demographic and molecular variables with Hazard ratios of 8.45 (PFS) and 10.55 (OS). Prognostic significance and predictive impact is being validated in the GPOH HIT2000 Ependymoma study. The identification of two distinct subgroups of PF ependymoma, and markers applicable for their clinical distinction, will allow for better prognostication of individual cases, independent of age, level of resection and WHO grade, and also for stratification in future ependymoma clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1432. doi:1538-7445.AM2012-1432
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages