Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (588)
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 531-531
    Abstract: Chromosomal translocations found in acute myeloid leukemia (AML) can generate oncogenic fusions with aberrant epigenetic and transcriptional functions. However, direct therapeutic targeting of leukemia fusion proteins has not been accomplished so far. Although high remission rates can be induced in patients diagnosed with AML1-ETO/t(8;21)-positive AML only half of them achieve long-term disease-free survival (Papaemmanuiel et al., NEJM, 2016). In the other half of these patients, the disease maintaining leukemia stem cell (LSC) clone is not eliminated by chemotherapy. A functional characteristic of LSCs is unlimited self-renewal capacity and several signaling pathways have been identified that maintain stem cell self-renewal. Targeting the oncogene induced self-renewal capacity of LSCs has great potential to eliminate the malignant clone and prevent relapse. To identify oncogenic cellular functions with relevance for LSC self-renewal, we performed global proteome profiling in murine AML1-ETO9a (AE) compared to MLL-AF9 (MA9) driven LSCs. Gene set enrichment analyses revealed a significant enrichment of calcium-dependent cellular functions and Phospholipase C (PLC)-signaling in AE LSCs. These data could be confirmed in sorted CD34+ blasts from AE-positive AML when compared to non-AE-AML. All PLC family members are regulators of Ca2+ homeostasis. However, when analyzing published AML gene expression datasets we found exclusively PLCG1 to be highly expressed in t(8;21) AML. Conditional activation of AE in embryonic stem cells resulted in induction of PLCG1 expression and PLCG1 was identified as a direct target of the AE fusion by ChIP-sequencing in AE-positive Kasumi-1 cells.Here, PLCG1 depletion resulted in reduced Ca2+ release, impaired proliferation and reduced colony formation in vitro. In a xenograft model, inactivation of PLCG1 resulted not only in delayed disease development (median survival shNT vs. shPLCG1: 135 days vs. not reached, p=0.02) but also in reduction of disease penetrance by 87%. Consistent with these results, transcriptome analysis revealed strong induction of gene sets related to myeloid differentiation and down-regulation of gene sets linked to proliferation, stemness and c-Myc targets. To confirm the functional role of PLCG1-signaling in AE-driven LSCs, we generated a new conditional knockout mouse model for Plcg1 and induced leukemia using the oncogenes AE and KRAS-G12D (AE/K). Genetic inactivation of Plcg1in vivo after engraftment of leukemic cells resulted in significant reduction of LSC numbers (p=0.04) and a reduction of disease penetrance by 67% in primary recipients. Isolated LSCs revealed induction of differentiation, loss of cell cycle activity and failed to re-establish disease in secondary recipients (Plcg1+/+ vs. Plcg1-/-: median survival 12 days vs. not reached; p=0.0001). In contrast, genetic deletion of Plcg1 appeared to be dispensable for normal murine HSC function during primary and secondary transplantation. Primary human t(8;21) AML cells (derived from 4 different donors) showed impaired colony forming capacity following PLCG1 inactivation in vitro irrespective of co-occurring mutations while colony formation of human CD34+ BM cells was not affected to a major extent. As Ca2+ signaling appeared deregulated in t(8;21) AML, we aimed to investigate the effects of pharmacologic Ca2+ inhibition as a tractable target downstream of PLCG1. To assess specifically for LSC function, we treated primary recipient mice with established AE/K-driven leukemia with the clinically approved calcineurin inhibitor ciclosporin (CsA), a compound that blocks intracellular Ca2+ release. CsA-treated animals showed reduction in total leukemic burden (spleen weight diluent vs. CsA, p=0.01) and LSC numbers (p=0.02). This resulted in increased survival of secondary recipient hosts (diluent vs. CsA: median 15 vs. 29 days, p=0.0002). These effects could not be observed for other oncogenes (e.g. MA9), confirming its specificity for AE-induced disease. Consistently, CsA treated primary human t(8;21)-positive AML blasts failed to form colonies in methylcellulose. In summary, our findings identified PLCG1-dependent Ca2+ signaling as a critical pathway for t(8;21) LSC maintenance and self-renewal. Most importantly, as PLCG1 is dispensable for maintenance of normal HSPCs, PLCG1 could serve as a novel therapeutic target in t(8;21) AML. Disclosures Döhner: Daiichi: Honoraria; Jazz: Honoraria; Novartis: Honoraria; Celgene: Honoraria; Janssen: Honoraria; CTI Biopharma: Consultancy, Honoraria. Bullinger:Novartis: Honoraria; Menarini: Honoraria; Jazz Pharmaceuticals: Honoraria; Abbvie: Honoraria; Astellas: Honoraria; Amgen: Honoraria; Seattle Genetics: Honoraria; Sanofi: Honoraria; Janssen: Honoraria; Hexal: Honoraria; Gilead: Honoraria; Daiichi Sankyo: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Bayer: Other: Financing of scientific research; Pfizer: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 130, No. Suppl_1 ( 2017-12-07), p. 792-792
    Abstract: The family of cold shock proteins (CSPs) is highly conserved and consists of 8 members, including Ybx1-3, Csde1 and Lin28. Ybx1 is a multifunctional DNA/RNA binding protein that modulates gene transcription and translation during inflammation and malignant transformation. Recently, our group identified Ybx1 as a mediator of Jak2 signaling in MPN that protects Jak2-mutated cells from Jak-inhibitor induced apoptosis. In a recently published genome wide CRISPR-Cas9 dropout screen in AML cell lines, depletion of Ybx1 resulted in the highest dropout indices compared to other CSP members, with strongest dependencies in cell lines harboring MLL-rearrangements. Protein expression of Ybx1 in healthy individuals (n=10), primary MDS (n=54) and AML (n=58) bone marrow (BM) biopsies, revealed high protein expression in the majority of AML and MDS cases. Consistently, gene expression data revealed high mRNA expression of Ybx1 in AML samples compared to normal controls. Genetic inactivation of Ybx1 in human AML cell lines by RNAi resulted in reduced proliferative capacity. Therefore, we sought to investigate the requirement for Ybx1 in malignant transformation. We used BM cells from a previously published conventional knockout (ko) mouse model (Lu et al., 2005) in which homozygous deletion is embryonically lethal due to brain malformation. We sorted Lineage-Sca1+Kit+ (LSK-) cells from the BM of heterozygous (Ybx1+/-) and wildtype (Ybx1+/+) mice. Cells were retrovirally infected with either MLL-AF9 (MA9) or HoxA9 and Meis1a (HA9M1) to assess for disease development by serial plating in methylcellulose. Haploinsufficiency for Ybx1 in MA9- or HA9M1 transformed cells limited re-plating capacity to 2-4 rounds. When we injected 2,5x 104 MA9-infected LSK cells into sublethally irradiated recipient mice, recipients of MA9-Ybx1+/- cells (n=8) and MA9-Ybx1+/+ (n=10) showed development of AML. However, recipients of MA9-Ybx1+/- cells had a significant delay in AML development (median survival 67.5 days for Ybx1+/+ versus 101.5 days for Ybx1+/- animals, p=0.0078**). This effect appeared even more pronounced when 1x 106 whole BM cells were transplanted into sublethally irradiated secondary recipients. Besides a significant delay in AML development (median survival 37.5 days for recipients of MA9-Ybx1+/+ versus 79 days for MA9-Ybx1+/- BM, p=0.0042**), disease penetrance was reduced by 40%, indicating that haploinsufficiency for Ybx1 impairs development of MA9 driven AML. In contrast, immunophenotypic abundance of stem- and progenitor cells in Ybx1+/+ versus Ybx1+/- animals revealed comparable numbers in all relevant subpopulations. Serial competitive transplantation of Ybx1+/+ and Ybx1+/- BM into primary and secondary recipient animals showed no competitive disadvantage or lack of self-renewal capacity of Ybx1+/- cells. To address the question whether Ybx1 may also be essential for maintenance of AML, we used RNAi to deplete Ybx1 in already established MA9 driven AML. LSK cells from BL/6 mice transformed with MA9 were injected into primary recipient mice. After AML onset, MA9-LSK cells were sorted and infected with either one of 3 shRNAs against Ybx1 or non-targeting (NT-) control. Lentiviral knockdown of 40% reduced colony formation by more than 50% but did not limit the re-plating capacity in vitro. When injected into sub-lethally irradiated recipient mice, lentiviral knockdown (kd) of Ybx1 resulted in a significant delay in AML development (median survival 39.5 days for NT-control versus 53 days for Ybx1 kd, p=0.0446*). To validate our findings, we used a newly generated conditional ko mouse model for Ybx1, in which exon 3 coding for the cold-shock domain is deleted by activation of an Mx1-Cre-recombinase following pIpC administration. Preliminary results provide first evidence that genetic deletion of Ybx1 after onset of MA9 driven leukemia resulted in improved survival of primary recipient (median survival 73 versus 83 days) and a reduced penetrance in secondary recipient mice. Taken together our results may provide first evidence for a functional role of Ybx1 in MLL-AF9 driven AML. As Ybx1 seems to be dispensable for normal hematopoietic cells, these findings may offer a potential therapeutic index. Experiments to assess for the requirement for Ybx1 in maintenance of murine and human AML as well as analysis on proteomic and transcriptional changes following Ybx1 deletion are currently under way. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. LBA-4-LBA-4
    Abstract: Long-term quiescence or dormancy preserves the genomic integrity as well as the long-term self-renewal and functional capacities of hematopoietic stem cells (HSCs) during homeostasis. In response to infections, inflammatory or chemotherapy induced stress, dormant HSCs (dHSCs) become reversibly activated and are critical for the re-establishment of homeostasis. In our previous work, we defined the molecular landscape of HSCs and its immediate progenitors by determining their DNA-methylome, RNA- transcriptome and their proteome (Cabezas-Wallscheid et al., Cell Stem Cell 2014). This revealed the vitamin A/retinoic acid (RA) signaling pathway to be molecularly predominantly enriched in HSCs. However, the functional relevance of dietary vitamin A for maintenance of HSCs remains uncertain. Moreover, the molecular identity of very rare dHSCs as well as the mechanism regulating their maintenance or the transition out and back into dormancy remains unknown. We now show by single-cell RNA-seq analysis of 〉 300 dHSCs and active HSCs (aHSCs) that the molecular transition from the most inactive dHSCs cluster to the most active HSCs can be best described as a continuous stream-like process linked to a steadily increasing metabolic activation. These single cell derived data are not consistent with a binary switch model, but instead suggest that activation/ differentiation downstream of dHSCs occurs in a continuum without the generation of discrete progenitor cell types. During this process,protein synthesis is increased first, followed by the increase of cell cycle related components. We then measured the time to first division starting from either a dHSC or an aHSC for 285 SiCs by single cell live cell imaging. We found that aHSCs showed an average of 29.5±0.7 hours to enter mitosis, while dHSCs needed 40.8±1.3 hours. This pronounced difference (11.3 hours) between two initially non-cycling populations suggests that dHSCs reside in a deeper level of quiescence, namely dormancy, which is also consistent with the molecular data mentioned above. The association of delayed cell cycle entry with the extremely low biosynthetic activity defines the status of dormancy and distinguishes it from quiescence. Furthermore, based on the acquired expression signatures, we describe the first marker-based, non-label retaining mouse model to specify dHSCs (Gpr-EGFP). We show molecularly and functionally that HSC-Gpr-pos cells resemble dHSCs demonstrating that the Gpr-EGFP mouse line can now be used as a simple alternative approach to track dHSCs and thus circumvent time-consuming label-retaining assays. The Gpr-EGFP model now allows to closely follow cell cycle dynamics within the dHSC compartment. Importantly, the mechanism regulating maintenance and the transition out of dormancy remains unknown. Our data focusing specifically on the most primitive HSCs revealed a critical role for vitamin A/RA signaling in controlling the cell cycle plasticity of dHSCs. We now show by in vitro and in vivo experiments, that treatment with the RA agonist all-trans retinoic-acid (ATRA) preserves dHSCs and maintains critical properties of HSCs. This includes maintenance of long-term self-renewal, low proliferation associated with decreased levels of Cdk6, expression of key transcription factors (Hoxb4), reduced protein synthesis and low levels of reactive oxygen species (ROS) as well as low Myc protein levels. Indeed, in response to activation signals, the presence of ATRA prevents up-regulation of c-Myc protein in HSCs and the effects of ATRA or drug induced Myc inhibition result in similar consequences on HSCs. Moreover, ATRA not only represses ROS production, but also prevents HSCs from entering the cell cycle upon diverse stress stimuli (pIC, LPS, 5-FU) in vivo. Most of the studies on vitamin A deficit-associated immunodeficiency are dedicated to the impaired function of lymphocytes. Thus, we analyzed the consequences of a vitamin A deficient diet for dormant HSCs. Strikingly, we found that HSCs are progressively lost over time and dHSCs did not recover after pIC-mediated activation in the absence of vitamin A. Collectively, these data uncover a critical role of vitamin A/RA signaling for the re-establishment of the dormant HSC population after stress-mediated activation. Together, our results highlight a so far unrecognized impact of dietary vitamin A on the regulation of cell cycle mediated stem cell plasticity. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 726-727
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1045-1045
    Abstract: Abstract 1045 In patients with FLT3-ITD mutated AML, FLT3-inhibitors have been used successfully as a ‘bridging therapy’ before allogeneic transplantation. Inhibitors of other kinases (such as imatinib for BCR-ABL positive CML) have previously been used successfully after allogeneic transplantation – even before discontinuation of immunosuppressive medication. However, it is known that some BCR-ABL inhibitors such as dasatinib exert strong inhibitory effects on primary T-cells through inhibition of Src-kinases relevant for T-cell receptor signaling. Even imatinib and nilotinib - although not affecting Src kinase activity – showed decreased T-cell activation and reactivity to some extent. Thus, the influence of FLT3-kinase inhibitors on T-cell function may be critical in the context of allogeneic bone marrow transplantation for FLT3-ITD-positive AML. Besides inhibition of FLT3-kinase, midostaurin (PKC412) exerts activity against PDGFR, VEGFR or c-KIT. In contrast, second generation inhibitors such as quizartinib (AC220) act in a far more FLT3-specific manner. Therefore, we aimed to investigate the effects of both clinically relevant FLT3-inhibitors on T-cell receptor signaling in comparison to the well characterized and potent BCR-ABL inhibitor dasatinib. Investigating primary T-cells derived from healthy donors, we applied a dose range of 10–50 nM dasatinib, 5–50nM midostaurin and 10–50 nM quizartinib. These dose ranges have been previously described to be achievable as trough levels during inhibitor therapy in early clinical trials. Upon incubation with dasatinib (10nM and 50nM), we found overall reduction in global tyrosine phosphorylation as detected by Western-blotting using the 4G10 antibody. In contrast, treatment with midostaurin left the activation of T-cell receptor signaling pathways unaffected. Comparable to DMSO control, overall phosphorylation was induced almost immediately after stimulation. Western-blotting of LCK and Plcg1 showed similar time dependent activation compared to total phosphorylation. Likewise, quizartinib did not reduce overall tyrosine phosphorylation level and left activation of downstream kinases (ZAP70, MAPK, LCK, Plcg1) largely unaffected. As activation of primary T-cells is a critical step in immune responses against viral and tumor antigens we aimed to investigate the influence of FLT3-kinase inhibitors quizartinib and midostaurin on activation of CD8+ T-cells. T-cells from healthy donors were stimulated using either PHA 0.5% or CD3/CD28 beads to ensure a more T-cell receptor specific stimulation. Using CD3/CD28 stimulation, CD69 expression was almost abrogated following dasatinib treatment. Applying clinically relevant doses of midostaurin or quizartinib to isolated T-cells did not influence CD69 expression. Expression levels upon PHA or CD3/CD28 stimulation were comparable to DMSO-control - even in the presence of 50nM midostaurin or quizartinib. Proliferation of T-cells upon CD3/CD28 stimulation was impaired by dasatinib treatment, while midostaurin and quizartinib left T-cell proliferation largely unaffected – as determined by CSFE staining. In order to investigate the T cell allo-reactivity, mixed lymphocyte culture was performed, where human pan-T-cells are co-cultured with allogeneic antigen presenting cells. T-cell proliferation – as measured by 3H-thymidine incorporation – was significantly impaired by dasatanib but neither midostaurin nor quizartinib treatment. Investigation of leukemia- and virus-antigen-specific T-cell responses are currently under way to gain deeper insight regarding this clinically relevant scenario. Overall, we found FLT3-kinase inhibitors midostaurin and quizartinib to leave T-cell activation, proliferation and function unaffected in-vitro. This information may be useful for the design of up-coming clinical trials testing the safety and efficacy of FLT3-kinase inhibitors in combination with allogeneic stem-cell transplantation. Disclosures: Lipka: Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Heidel:Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 529-529
    Abstract: Several cellular pathways control the fine balance between self-renewal and differentiation to maintain leukemia-initiating cell (LIC) function. To identify cellular dependencies with relevance for oncogenic fusion proteins, we performed global proteome profiling. Acute myeloid leukemia (AML) was induced by retroviral expression of either MLL-AF9 (MA9) or AML1-ETO9a (AE) in murine hematopoietic stem and progenitor cells (HSPCs) (Lineage-Sca1+Kit+, LSK) which were subsequently transplanted into irradiated syngeneic recipients. After onset of leukemia, LIC-enriched (GFP+ Kithigh) cells isolated from 4 different primary recipients (per oncogene) were analyzed by in-depth quantitative proteomic analysis using high-resolution mass spectrometry (MS). More than 3,000 proteins were quantified with 868 proteins being differentially expressed between MA9 and AE LIC-enriched populations. In MLL-rearranged (MLLr) cells, gene set enrichment analysis (GSEA) revealed significant enrichment of cellular functions related to protein degradation and proteasome function. As this enrichment is present in MLLr-leukemia but not AE-driven LICs, may indicate an oncogene specific vulnerability. Expression of proteasome subunits is highly heterogeneous between different cell types and therefore may also be influenced by the underlying differentiation stage or oncogenic fusion. In published AML gene-expression datasets, immunoproteasome (IP) subunits PSMB8/LMP7 (p=0.0003***), PSMB9/LMP2 (p=0.0007***) and PSMB10/MECL1 (p & lt;0.0001****) showed significantly higher expression in MLLr compared to non-MLLr-AML. IP is a proteasomal variant constitutively expressed in cells of hematopoietic origin, induced under stimulation with pro-inflammatory cytokines and relevant for mediating stress-responses during inflammation and infection. To assess for functional dependency of MLLr cells on IP subunits we performed an in vitro CRISPR/Cas9 dropout screen in MLLr MOLM-13 cells. Genetic inactivation of PSMB8/LMP7 resulted in outcompetition with 3/5 sgRNAs, while there was less dependency detectable for the other subunits. Specificity of this finding was confirmed in 5 different cell lines (4 MLLr; 1 non-MLLr) by RNAi using 2 shRNAs against PSMB8/LMP7 versus non-targeting control. To confirm these findings in primary cells, we used a previously published conventional LMP7 knockout mouse model (Fehling et al., Science, 1994). LSK cells sorted from the bone marrow (BM) of LMP7 knockout and wildtype mice were retrovirally transformed with either MA9, MLL-ENL (ME) or NUP98-HOXA9 (as non-MLLr control) to assess for disease development by serial plating in methylcellulose. Only in MA9 or ME transformed cells LMP7-deficiency limited re-plating capacity to 2-4 rounds. When we injected 2,5x 104 MA9-infected LSK cells into sublethally irradiated recipient mice, recipients of MA9-LMP7-/- cells (n=12) and MA9-LMP7+/+ (n=12) showed development of AML. However, recipients of MA9-LMP7-/- cells had a significant delay in AML development (median survival 63.0 days for LMP7+/+ versus 92.5 days for LMP7 -/- animals, p=0.0387*). Besides the significant delay in AML development, disease penetrance was reduced by 50%, indicating that deficiency for LMP7 impairs development of MA9 driven AML. In contrast, immunophenotypic abundance of HSPCs in LMP7-/- versus LMP7+/+ animals revealed comparable numbers in all relevant subpopulations. Competitive transplantation of LMP7-/- BM into recipient hosts showed no competitive disadvantage or lack of self-renewal capacity compared to LMP7+/+ controls. Pharmacologic inhibition of IP function using the specific LMP7-inhibitor PR-957 (ONX-0914) resulted in significant delay of disease development in secondary recipient hosts. To assess its effect on LIC frequency we performed limiting dilution assays of MA9 leukemic cells in sublethally irradiated recipient mice. PR-957 treatment reduced LIC frequency compared to DMSO control (1/57410 vs. 1/4450). Pharmacologic inhibition of PSMB8/LMP7 in human MLLr leukemia cell lines induced cellular differentiation. Likewise, cell cycle and metabolism appeared affected, functions which could be confirmed by global transcriptome analysis. Taken together, our studies uncover a selective dependency of MLLr-leukemia on IP function and identify PSMB8/LMP7 as a tractable target. Disclosures Heidel: Celgene: Consultancy; Novartis: Consultancy, Research Funding; CTI: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 491-492
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1074-1074
    Abstract: Abstract 1074 Von Willebrand's disease type 2B (VWD2B) is a rare bleeding disorder characterized by enhanced binding of von Willebrand factor (VWF) to platelet GPIbα due to gain-of-function mutations clustering in the VWF A1 domain. Binding of mutated type-2B VWF to GPIbα on circulating platelets may result in spontaneous platelet agglutination and increased ADAMTS13-mediated proteolysis of bound VWF. Consequently, thrombocytopenia, loss of larger VWF plasma multimers, and increased agonist-induced platelet agglutination at low concentrations of ristocetin are typical findings in VWD2B. However, not all of these laboratory features must be present, and confirming a diagnosis of VWD2B can thus be a challenge. We describe the case of a first-time pregnant woman (MCMDM-1 bleeding severity score, 10) with hereditary thrombocytopenia (platelet count, 17 × 109/L) and spontaneous ex-vivo platelet aggregate formation, in whom previous testing for VWD2B had been inconclusive due to absent additional platelet agglutination at low concentrations of ristocetin. Therefore, platelet-type VWD caused by mutated GPIbα remained possible. Microscopic examination of the patient's peripheral blood smear revealed both small agglutinates of moderately enlarged and scattered single giant platelets. VWF:CB was 26% (normal, 50–250%), and VWF:Ag was 56% (50–160%), resulting in an abnormal activity to antigen ratio of 0.46 (0.8–1.2). Multimer analysis revealed loss of larger and intermediate sized VWF plasma multimers, and VWD2B was eventually diagnosed by identification of the mutation p.A1461D in the VWF A1 domain. Using an in-house ELISA, we assessed binding of recombinant wild-type (WT) and mutant VWF, respectively, to an immobilized GPIbα fragment in the absence and presence of increasing concentrations of ristocetin (0.3–1.5 mg/mL). Surprisingly, when compared to WT VWF in the presence of 1.5 mg/mL ristocetin (100%), binding of the p.A1461D mutant was already increased to 177% in the absence of ristocetin with only marginal additional binding evident at 1.5 mg/mL (238%). In comparison, binding of the p.V1316M mutant causative of VWD2B formerly described as the Montreal platelet syndrome, an inherited form of thrombocytopenia characterized by mucocutaneous bleeding and circulating giant platelets, was only 73% at 0 mg/mL ristocetin with significantly increased binding at 1.5 mg/mL (171%). Interestingly, ex-vivo stimulation of the patient's platelets with ADP or TRAP-6 resulted in only minimal surface CD62P expression, as analyzed by flow cytometry, while no CD62P was present on un-stimulated platelets, suggesting defective α -granule secretion. Similar findings were obtained on platelets from the patient's father and brother who also had severe thrombocytopenia and genetically confirmed VWD2B. Successful delivery of a healthy infant was achieved by only two peripartal doses of highly purified VWF concentrate in addition to systemic antifibrinolytics. In summary, this report further highlights the importance of genetic testing for the diagnostic work-up of suspected VWD2B, because the typical VWF activity pattern may not be present in all patients. Furthermore, our ELISA data demonstrate significant ristocetin-independent binding of the p.A1461D VWF mutant to platelet GPIbα, suggesting that the assay could be useful in differentiating VWD2B from platelet-type VWD in cases with severe thrombocytopenia and/or pronounced spontaneous platelet agglutination. Finally, our flow cytometry experiments support the concept of altered megakaryocytopoiesis and dysfunctional (pro)platelet production in VWD2B, which are likely due to adhesive intracellular interactions between mutated VWF and GPIbα and may result in concomitant α -storage pool disease. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 127, No. 23 ( 2016-06-09), p. 2890-2902
    Abstract: CDK6 directly regulates transcription of FLT3 and PIM1 in a kinase-dependent manner. CDK6 kinase inhibition impairs not only FLT3-dependent cell growth in vitro but also FLT3-driven leukemogenesis in vivo.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 1255-1256
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages