Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (11)
  • Wiesmeier, Martin  (11)
  • 1
    In: Journal of Plant Nutrition and Soil Science, Wiley, Vol. 175, No. 3 ( 2012-06), p. 434-442
    Type of Medium: Online Resource
    ISSN: 1436-8730 , 1522-2624
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 1481142-X
    detail.hit.zdb_id: 1470765-2
    detail.hit.zdb_id: 200063-5
    SSG: 12
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Land Degradation & Development Vol. 29, No. 4 ( 2018-04), p. 1041-1053
    In: Land Degradation & Development, Wiley, Vol. 29, No. 4 ( 2018-04), p. 1041-1053
    Abstract: The Food and Agriculture Organization considers around a quarter of global land to be degraded. Of particular concern are threats to soils in water‐limited regions, which are critical to food and economic security in countries across the globe but are under increasing pressure due to human use and climatic forcing. These soils have been used to feed and provide resources and services to human societies for millennia, with earliest land‐uses dating back to prehistoric times. With the adoption of modern, frequently unsuitable agricultural practices combined with the population pressures and shifting consumption patterns, soils in water‐limited regions have come under threat, resulting in degradation and in worst‐case scenarios, desertification. Here, we review the current state of soils in water‐limited environments and provide a guide to management for conservation and restoration of these fragile soils. Options to manage specific threats to soil functionality, namely, erosion, soil salinity, loss of functionality due to landscape homogenization, degradation of soil organic matter, and climate vulnerability are presented for specific land‐uses using a whole‐system approach management framework.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 21, No. 10 ( 2015-10), p. 3836-3845
    Abstract: Organic carbon ( OC ) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon ( SOC ) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles 〈 20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC , which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC . Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Plant Nutrition and Soil Science Vol. 182, No. 5 ( 2019-10), p. 772-781
    In: Journal of Plant Nutrition and Soil Science, Wiley, Vol. 182, No. 5 ( 2019-10), p. 772-781
    Abstract: Archived soil samples are a valuable tool for any long‐term soil research. We analysed total carbon (C) and nitrogen (N) content and soil organic matter fractions in 38 archived soil samples that were stored for up to 21 years and compared air‐dried storage to frozen storage conditions. Samples include top‐ and upper subsoils, different soil texture and land use with C contents between 4.3 and 174 mg g −1 . The results from this study reveal no changes in total C and N contents with storage time up to 21 years or type of storage (freezing vs . air drying). The analyses of soil physical fractions also revealed no significant differences between air‐dried stored and frozen stored samples for most samples. However, we found indications, that freezing of soil material might lead to changes in the mineral fractions for soils containing high amounts of water. Therefore, and as archiving soils in a frozen state is more expensive than storing air‐dried samples, we recommend the use of air‐dried samples for C quality analyses of archived soil samples.
    Type of Medium: Online Resource
    ISSN: 1436-8730 , 1522-2624
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1481142-X
    detail.hit.zdb_id: 1470765-2
    detail.hit.zdb_id: 200063-5
    SSG: 12
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Global Change Biology, Wiley, Vol. 24, No. 3 ( 2018-03), p. 987-1000
    Abstract: Agricultural soils are widely recognized to be capable of carbon sequestration that contributes to mitigating CO 2 emissions. To better understand soil organic carbon ( SOC ) stock dynamics and its driving and controlling factors corresponding with a period of rapid agronomic evolution from the 1980s to the 2010s in the North China Plain ( NCP ), we collected data from two region‐wide soil sampling campaigns (in the 1980s and 2010s) and conducted an analysis of the controlling factors using the random forest model. Between the 1980s and 2010s, environmental (i.e. soil salinity/fertility) and societal (i.e. policy/techniques) factors both contributed to adoption of new management practices (i.e. chemical fertilizer application/mechanization). Results of our work indicate that SOC stocks in the NCP croplands increased significantly, which also closely related to soil total nitrogen changes. Samples collected near the surface (0–20 cm) and deeper (20–40 cm) both increased by an average of 9.4 and 5.1 Mg C ha −1 , respectively, which are equivalent to increases of 73% and 56% compared with initial SOC stocks in the 1980s. The annual carbon sequestration amount in surface soils reached 10.9 Tg C year −1 , which contributed an estimated 43% of total carbon sequestration in all of China's cropland on just 27% of its area. Successful desalinization and the subsequent increases in carbon (C) inputs, induced by agricultural projects and policies intended to support crop production (i.e. reconstruction of low yield farmland, and agricultural subsidies), combined with improved cultivation practices (i.e. fertilization and straw return) since the early 1980s were the main drivers for the SOC stock increase. This study suggests that rehabilitation of NCP soils to reduce salinity and increase crop yields have also served as a pathway for substantial soil C sequestration.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Change Biology, Wiley, Vol. 20, No. 2 ( 2014-02), p. 653-665
    Abstract: Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO 2 mitigation. However, the potential of soils to sequester soil organic carbon ( SOC ) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [ Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC . A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO 2 ‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO 2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Land Degradation & Development, Wiley, Vol. 29, No. 4 ( 2018-04), p. 875-883
    Abstract: Long‐term cultivation of steppe soils in a nonsustainable way caused severe soil degradation and reduced agricultural productivity in Eastern Europe, one of the world's most important areas for cereal production. In order to combat soil erosion and maintain yields, a widespread system of tree windbreaks was introduced in the 1950s, accompanied by improved agricultural practices in recent years. However, information on the effectiveness of such measures to rebuild soil organic carbon (SOC) is scarce. The objective of this study was to estimate the OC storage potential of the fine mineral fraction of degraded arable steppe soils in Moldova and to quantify SOC sequestration rates under (a) windbreaks, (b) cropland with improved crop rotation/manure application, and (c) cropland with cover cropping. Natural grassland relicts served as a reference to estimate the SOC saturation potential. Our results revealed a low SOC saturation of 50% under conventional agricultural use due to high SOC losses, indicating a high potential for SOC sequestration. Relatively high SOC sequestration rates were determined for topsoils (0–30 cm) under windbreaks (0.9 t ha −1  yr −1 ), improved crop rotation/manure application (1.3 t ha −1  yr −1 ), and cover cropping (1.9 t ha −1  yr −1 ). In this regard, sequestration rates derived from OC changes of the fine fraction may be more reliable than total SOC‐based rates, particularly for windbreaks with high proportions of labile SOC. We conclude that implementation of improved agricultural management together with the maintenance of windbreaks is a promising strategy to rebuild SOC, reduce widespread soil erosion and compaction, and secure Moldova's agricultural productivity.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Land Degradation & Development, Wiley, Vol. 29, No. 12 ( 2018-12), p. 4439-4456
    Abstract: Nearly 90% of the 390 million ha of grasslands in northern China are degraded. ‘Grazing exclusion’ has been implemented as a nature‐based solution to rejuvenate degraded grasslands, but the effectiveness of the rejuvenation processes is uncertain. Here, we investigated the effects of grazing exclusion on aboveground plant community traits, soil physiochemical and biological properties, and the mechanisms responsible for enhanced grassland rejuvenation. A meta‐analysis across various studies was used to assess the effectiveness. On average, grazing exclusion improved vegetation coverage by 18.5 percentage points and increased aboveground biomass by 1.13 t ha −1 and root biomass by 1.27 t ha −1 , which represent an increase of 84%, 246%, and 31%, respectively, compared with continuous grazing practices. Grazing exclusion reduced soil bulk density by 13.7% and increased soil water content by 68.9%. Grasslands under grazing exclusion increased soil organic carbon (SOC) in the 0‐ to 15‐cm depth by 3.95 (±0.35 Std err) t ha −1 and total soil N, available N, and total soil P in the 0‐ to 40‐cm depth by 2.39 (±0.14), 0.83 (±0.37), and 1.96 (±0.44) t ha −1 , respectively, compared with continuous grazing; these values represent an increase of 31%, 25%, 23%, and 14%, respectively. Prolonging the duration (years) of grazing practices enlarged the differences in SOC and soil N content between grazing exclusion and continuous grazing. Grazing exclusion has improved plant community traits and enhanced soil physiochemical and biological properties of degraded grasslands, and thus, this ‘nature‐based’ approach can serve as an effective means to rejuvenate degraded grasslands.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Land Degradation & Development Vol. 29, No. 12 ( 2018-12)
    In: Land Degradation & Development, Wiley, Vol. 29, No. 12 ( 2018-12)
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: European Journal of Soil Science, Wiley, Vol. 74, No. 5 ( 2023-09)
    Abstract: The increasing demand for biomass for food, animal feed, fibre and bioenergy requires optimization of soil productivity, while at the same time, protecting other soil functions such as nutrient cycling and buffering, carbon storage, habitat for biological activity and water filter and storage. Therefore, one of the main challenges for sustainable agriculture is to produce high yields while maintaining all the other soil functions. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soils that generate those functions. We developed a soil model to simulate the impact of various agricultural management options and climate change on soil functions by integrating the relevant processes mechanistically and in a systemic way. As a special feature, we include the dynamics of soil structure induced by tillage and biological activity, which is especially relevant in arable soils. The model operates on a 1D soil profile consisting of a number of discrete layers with dynamic thickness. We demonstrate the model performance by simulating crop growth, root growth, nutrient and water uptake, nitrogen cycling, soil organic matter turnover, microbial activity, water distribution and soil structure dynamics in a long‐term field experiment including different crops and different types and levels of fertilization. The model is able to capture essential features that are measured regularly including crop yield, soil organic carbon, and soil nitrogen. In this way, the plausibility of the implemented processes and their interactions is confirmed. Furthermore, we present the results of explorative simulations comparing scenarios with and without tillage events to analyse the effect of soil structure on soil functions. Since the model is process‐based, we are confident that the model can also be used to predict quantities that have not been measured or to estimate the effect of management measures and climate states not yet been observed. The model thus has the potential to predict the site‐specific impact of management decisions on soil functions, which is of great importance for the development of a sustainable agriculture that is currently also on the agenda of the ‘Green Deal’ at the European level.
    Type of Medium: Online Resource
    ISSN: 1351-0754 , 1365-2389
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 240830-2
    detail.hit.zdb_id: 2020243-X
    detail.hit.zdb_id: 1191614-X
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages