Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (25)
  • Kool, Marcel  (25)
Type of Medium
Publisher
  • American Association for Cancer Research (AACR)  (25)
Language
Years
Subjects(RVK)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 6 ( 2019-03-15), p. 1851-1866
    Abstract: Pilocytic astrocytoma is the most common childhood brain tumor, characterized by constitutive MAPK activation. MAPK signaling induces oncogene-induced senescence (OIS), which may cause unpredictable growth behavior of pilocytic astrocytomas. The senescence-associated secretory phenotype (SASP) has been shown to regulate OIS, but its role in pilocytic astrocytoma remains unknown. Experimental Design: The patient-derived pilocytic astrocytoma cell culture model, DKFZ-BT66, was used to demonstrate presence of the SASP and analyze its impact on OIS in pilocytic astrocytoma. The model allows for doxycycline-inducible switching between proliferation and OIS. Both states were studied using gene expression profiling (GEP), Western blot, ELISA, and cell viability testing. Primary pilocytic astrocytoma tumors were analyzed by GEP and multiplex assay. Results: SASP factors were upregulated in primary human and murine pilocytic astrocytoma and during OIS in DKFZ-BT66 cells. Conditioned medium induced growth arrest of proliferating pilocytic astrocytoma cells. The SASP factors IL1B and IL6 were upregulated in primary pilocytic astrocytoma, and both pathways were regulated during OIS in DKFZ-BT66. Stimulation with rIL1B but not rIL6 reduced growth of DKFZ-BT66 cells and induced the SASP. Anti-inflammatory treatment with dexamethasone induced regrowth of senescent cells and inhibited the SASP. Senescent DKFZ-BT66 cells responded to senolytic BCL2 inhibitors. High IL1B and SASP expression in pilocytic astrocytoma tumors was associated with favorable progression-free survival. Conclusions: We provide evidence for the SASP regulating OIS in pediatric pilocytic astrocytoma, with IL1B as a relevant mediator. SASP expression could enable prediction of progression in patients with pilocytic astrocytoma. Further investigation of the SASP driving the unpredictable growth of pilocytic astrocytomas, and its possible therapeutic application, is warranted.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 4124-4124
    Abstract: Ependymomas are neuroepithelial tumors of the central nervous system (CNS), presenting in both adults and children but accounting for almost 10% of all pediatric CNS tumors and up to 30% of those in children under 3 years. In a previous study we identified two molecular groups of supratentorial (ST) ependymoma in pediatric patients driven by distinct gene fusions involving either the NF-κB effector RELA or the HIPPO signaling regulator YAP1, designated ST-EPN-RELA and ST-EPN-YAP1, respectively. The lack of adequate models for ST-EPN-YAP1, which predominantly occurs in very young children, has so far hindered the development of effective targeted therapies for these tumors. In an attempt to model this group, the most frequent fusion type, YAP1-MAMLD1, was cloned into a Luciferase-carrying transposable vector. Oncogenicity was subsequently tested using an electroporation-based in vivo gene transfer following injection of the vector into the lateral ventricle of E13.5 wildtype mouse embryos. After birth, YAP1-MAMLD1-expressing tumors, monitored using luciferase-based in vivo bioluminescence imaging, developed rapidly with 100% penetrance, indicating that the fusion alone is sufficient to initiate tumors. To further investigate the role of this fusion in human EPNs, we performed YAP1 ChIP-seq analyses on human ST-EPN-YAP1 and ST-EPN-RELA primary tumors. Despite similar gene expression levels of YAP1 in both molecular groups, our comparative analyses found that putative binding sites of TEADs, transcriptional factors interacting with YAP1, were significantly enriched in identified YAP1 peaks in ST-EPN-YAP1. In vivo validation further confirmed that interaction between YAP1-MAMLD1 and TEADs is crucial for oncogenicity of the fusion, since prevention of YAP1-TEAD binding did not result in tumor formation. Thus, targeting the YAP1-TEAD interaction might represent a promising therapeutic approach for this devastating infant disease. Citation Format: Kristian W. Pajtler, Konstantin Okonechnikov, Mikaella Vouri, Sebastian Brabetz, David T. Jones, Andrey Korshunov, David Capper, Lukas Chavez, Stefan M. Pfister, Marcel Kool, Daisuke Kawauchi. YAP1 fusion proteins mediate oncogenic activity in ependymoma via interaction with TEAD transcription factors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4124.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 2696-2696
    Abstract: CNS-primitive neuroectodermal tumors (CNS PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Histological diagnosis is complicated by morphological heterogeneity and divergent differentiation. Recent studies suggest the existence of molecular subgroups of CNS-PNETs sharing biological characteristics with other CNS tumors. To investigate this we have analyzed 323 fresh-frozen or paraffin-embedded institutionally diagnosed CNS-PNETs using DNA methylation and expression arrays. Data were compared to 211 reference cases of other pediatric and adult brain tumors representing more than 20 well-known entities. DNA methylation and gene expression patterns showed that a significant proportion of CNS PNETs display molecular profiles indistinguishable from those of various other well defined CNS tumor entities. Hallmark genetic alterations for each of these well-defined entities, such as amplification of 19q13.42, mutations in IDH1 or H3F3A, mutations/deletions of the SMARCB1 locus, or RELA fusions, were frequently detected among the reclassified cases. From the remaining fraction of CNS PNETs we have identified four new CNS tumor entities, each associated with a unique recurrent genetic alteration and distinct histopathological and clinical features. Based on these findings we designated these four new entities as “CNS neuroblastoma with FOXR2 activation (CNS NB FOXR2)”, “CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT CIC)”, “CNS high grade neuroepithelial tumor with MN1 alteration (CNS HGNET MN1)”, and “CNS high grade neuroepithelial tumor with BCOR alteration (CNS HGNET BCOR)”. Our findings reinforce the importance of incorporating molecular information into the next revision of the WHO classification of CNS tumors, and warrant a replacement of the term “CNS PNET” with biologically specific designations. Our study provides an innovative framework for improving diagnostic accuracy and prognostication in malignant CNS tumors. The approach is amenable to retrospective analyses of patients treated with current regimens and will facilitate the design of more meaningful clinical trials for patients with malignant brain tumors. Citation Format: Dominik Sturm, Brent Orr, Umut H. Toprak, Volker Hovestadt, David T.W. Jones, David Capper, Peter Lichter, Andrey Korshunov, Stefan M. Pfister, David W. Ellison, Marcel Kool. Four new brain tumor entities emerge from molecular classification of CNS-PNETs. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2696.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 3093-3093
    Abstract: Embryonal tumor with multilayered rosettes (ETMR) is a highly aggressive embryonal CNS tumor, which predominantly affects children under the age of three to four years and is associated with a highly aggressive disease course with reported overall survival times ranging from 5-30 months. As these tumors have often been misdiagnosed as medulloblastoma or CNS-PNETs it was thought that ETMR is a very rare tumor. However, now molecular tools are available to detect ETMR and distinguish them from other brain tumors it has become clear that it is one of the most common brain tumors among infants. Amplification of a miRNA cluster at 19q13.42 and high expression of LIN28A have been identified as molecular hallmarks of ETMR, affecting 95-100% of samples tested and are considered unifying molecular diagnostic markers to detect them and distinguish from other brain tumors. Three histological variants of ETMR are known. These include embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma (EBL), and medulloepithelioma (MEPL). A comprehensive clinical, pathological, and molecular analysis of 97 cases of these fatal brain neoplasms identified uniform molecular signatures in all tumors irrespective of histological patterns, indicating that ETANTR, EBL, and MEPL comprise a single biological entity. In particular, DNA methylation (Illumina 450k arrays) and gene expression data (Affymetrix 133plus2.0 arrays) showed that the three histological variants of ETMR are biologically indistinguishable but together highly distinct from other pediatric brain tumors. In order to better understand the biology of these highly aggressive pediatric CNS malignancies, we performed whole genome DNA sequencing of 15 tumor-normal pairs including 3 recurrences, complemented by (mi)RNA sequencing of tumor RNA. Mutations detected included mutations in TP53, CTNNB1, and mutations affecting the miRNA processing pathway. Chromothripsis was detected in several cases and in all cases affecting chromosome 19q. Finally, as DNA sequencing identified only very few somatic mutations per tumor, we next studied the epigenome of these tumors by performing whole genome bisulfite sequencing. Integrating these high throughput genomic analyses may now lead to alternative treatment strategies for these highly aggressive and therapy-resistant tumors. Citation Format: Marcel Kool, Natalie Jäger, Dominik Sturm, David T.W. Jones, Volker Hoverstadt, Ivo Buchhalter, Pascal Johann, Christin Schmidt, Marina Ryzhova, Paul A. Northcott, Pablo Landgraf, Marc Remke, Michael D. Taylor, Martin Hasselblatt, Ulrich Schüller, Annie Huang, Marie-Laure Yaspo, Andreas von Deimling, Roland Eils, Peter Lichter, Andrey Korshunov, Stefan M. Pfister. Unravelling the biology of aggressive and therapy-resistant embryonal tumors with multilayered rosettes (ETMR). [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 3093. doi:10.1158/1538-7445.AM2014-3093
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 9 ( 2021-09-01), p. 2230-2247
    Abstract: Molecular groups of supratentorial ependymomas comprise tumors with ZFTA–RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation–based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion–positive tumors. Significance: ZFTA–RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion–positive tumors, such as GLI2. This article is highlighted in the In This Issue feature, p. 2113
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 1 ( 2022-01-01), p. 116-128
    Abstract: International consensus and the 2021 WHO classification recognize eight molecular subgroups among non-WNT/non-SHH (Group 3/4) medulloblastoma, representing approximately 60% of tumors. However, very few clinical centers worldwide possess the technical capabilities to determine DNA methylation profiles or other molecular parameters of high risk for group 3/4 tumors. As a result, biomarker-driven risk stratification and therapy assignment constitutes a major challenge in medulloblastoma research. Here, we identify an IHC marker as a clinically tractable method for improved medulloblastoma risk stratification. Experimental Design: We bioinformatically analyzed published medulloblastoma transcriptomes and proteomes identifying as a potential biomarker TPD52, whose IHC prognostic value was validated across three group 3/4 medulloblastoma clinical cohorts (n = 387) treated with conventional therapies. Results: TPD52 IHC positivity represented a significant independent predictor of early relapse and death for group 3/4 medulloblastoma [HRs between 3.67 and 26.7; 95% confidence interval (CI) between 1.00 and 706.23; P = 0.05, 0.017, and 0.0058]. Cross-validated survival models incorporating TPD52 IHC with clinical features outperformed existing state-of-the-art risk stratification schemes, and reclassified approximately 50% of patients into more appropriate risk categories. Finally, TPD52 immunopositivity was a predictive indicator of poor response to chemotherapy [HR, 12.66; 95% CI, 3.53–45.40; P & lt; 0.0001], suggesting important implication for therapeutic choices. Conclusions: This study redefines the approach to risk stratification in group 3/4 medulloblastoma in global practice. Because integration of TPD52 IHC in classification algorithms significantly improved outcome prediction, this test could be rapidly adopted for risk stratification on a global scale, independently of advanced but technically challenging molecular profiling techniques.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 8_Supplement ( 2011-04-15), p. 3447-3447
    Abstract: Current integrated genomic approaches indicate distinct biological variants in medulloblastoma. Comprehensive molecular classification strategies utilize cytogenetic or immunohistochemical biomarkers to refine risk stratification. Novel complementary markers may ameliorate outcome prediction particularly in intermediate or high-risk medulloblastomas. We combined transcriptome and DNA copy-number analysis for 64 primary tumors. Bioinformatic tools were applied to investigate marker genes of molecular variants. Differentially expressed transcripts were evaluated for prognostic value in the entire screening cohort. Immunohistochemical markers were used to determine molecular subtypes in adult and pediatric medulloblastoma samples (n=235). Immunopositivity of FSTL5 was correlated with molecular and prognostic subgroups for 235 non-overlapping medulloblastoma samples on two independent tissue microarrays (TMA). Unsupervised cluster analyses of transcriptome profiles revealed four distinct molecular variants: WNT, SHH, Group C, and Group D. Stable subgroup separation was achieved using only 300 most varying transcripts. Specific distribution of clinical and molecular characteristics was noted for each cluster. Notably, Group C tumors were exclusively present in pediatric medulloblastomas as determined by immunohistochemistry. Delimited expression patterns of FSTL5 in each molecular subgroup were confirmed by quantitative real-time PCR. FSTL5 transcripts were most up-regulated in Group C and Group D tumors with unfavorable prognosis, whereas WNT medulloblastomas showed marked down-regulation. Immunopositivity of FSTL5 identified a large proportion of patients (84 of 235 patients; 36%) at high risk for relapse and death in particular in patients with WNT/SHH-independent tumors. Multivariate analysis revealed that FSTL5 immunopositivity constitutes an independent prognostic marker in pediatric and adult patient cohorts (p & lt;0.0001). Importantly, adding this biomarker to comprehensive outcome prediction schemes substantially reduced the prediction error of the model. Comprehensive analyses of transcriptome and genetic alterations unravel four distinct disease variants. By addition of FSTL5 immunohistochemistry, existing molecular stratification schemes can effectively be complemented and sub-classification of WNT/SHH-independent tumors substantially optimized. This approach may ultimately define clear risk groups to individualize treatment intensities in future clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3447. doi:10.1158/1538-7445.AM2011-3447
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 1424-1424
    Abstract: Medulloblastoma comprises the most common malignant brain tumor in childhood. Recently, integrated genomic approaches revealed four major biological disease variants: WNT (wingless), SHH (sonic hedgehog), group 3, and group 4. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk non-WNT/non-SHH medulloblastoma. Thus, novel therapeutic options for these patients are urgently warranted. Through mRNA expression profiling of 64 primary tumor samples, we identified potassium inwardly-rectifying channel J2 (KCNJ2) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. Notably, recent reports have linked deregulation of voltage-dependent ion channels to the development of other types of cancer. We first validated our microarray findings on KCNJ2 transcript levels using quantitative real-time PCR. High KCNJ2 transcript levels were significantly associated with non-WNT/non-SHH grouping, anaplastic histology, metastatic dissemination, and poor clinical outcome. KCNJ2 protein expression was analyzed by immunohistochemistry in a large cohort of patients (n=199), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival (p & lt;0.0001). To functionally validate the potential role of KCNJ2 in medulloblastoma biology, we performed knockdown experiments by small interfering RNA-mediated silencing in two well characterized medulloblastoma cell lines. Knockdown of KCNJ2 resulted in a reduced proliferation rate and induction of apoptosis. Furthermore, treatment of the medulloblastoma cell lines with Amiodarone and SR 59230A, two inhibitors of this class of Kir channels, phenocopied these promising anti-proliferative and pro-apoptotic effects in a time- and dose-dependent manner. Whole cell patch clamp results revealed a remarkable current reduction upon inhibitor treatment with SR 59230A. In summary, we could delineate KCNJ2 immunopositivity as an independent biomarker for medulloblastoma with dismal prognosis. Thus, pharmacological inhibition of this candidate gene may constitute a new therapeutic option for patients with high-risk medulloblastomas. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1424. doi:1538-7445.AM2012-1424
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 1 ( 2015-01-01), p. 134-146
    Abstract: Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)–driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood–brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma. Cancer Res; 75(1); 134–46. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 1352-1352
    Abstract: Chromothripsis and chromoanasynthesis are two forms of genomic instability leading to complex genomic rearrangements that affect one or very few chromosomes. These one-off catastrophic events play a role in numerous tumor entities as well as in some congenital diseases. The availability of murine models recapitulating both phenomena would substantially facilitate the investigation of the mechanistic aspects underlying catastrophic genomic events. Homologous recombination repair (HR) and canonical Non-Homologous-End-Joining (cNHEJ) represent the two major processes for DNA double-strand break repair in mammalian cells. Conditional inactivation of key factors of either of these two pathways, such as Brca2 for HR and Xrcc4 or Lig4 for cNHEJ in nestin-expressing or Emx1-expressing murine neural progenitor cells leads to medulloblastomas and gliomas in a p53-deficient background. We showed by whole-genome sequencing that these tumors frequently display chromothripsis or chromoanasynthesis (33 to 73% of the analyzed tumors, n= 27) and that catastrophic rearrangements drive tumor development. FISH analysis identified a link between chromoanasynthesis and increased numerical and structural aberrations and with the presence of marker chromosomes. In addition, amplifications of c-Myc and n-Myc likely facilitate catastrophic events. Detailed analysis of the microhomologies at the breakpoint junctions on the chromosomes affected by complex genomic rearrangements identified cNHEJ and alternative end-joining as likely repair processes involved in chromothripsis and chromoanasynthesis. Treatment of cells derived from the mouse tumors with inhibitors of HR and/or alternative end-joining (e.g. RAD51 and PARP inhibitors, respectively) in combination with DNA damage revealed the dependence of these tumor cells on specific repair processes and showed that these DNA repair deficiencies can be utilized for synthetic lethality approaches. Comparison of the mouse tumors with whole-genome sequencing data from human medulloblastomas (n=68) and gliomas (n=32) identified an association between chromothripsis and deficiencies in repair processes, by analyzing copy-number level aberrations affecting repair factors and mutational signatures of DNA double-strand break repair defects. This link between DNA repair deficiency and chromothripsis was further confirmed in additional tumor entities such as breast cancer (n=356) and melanoma (n=69). In analogy to the clinical use of PARP inhibitors in the context of BRCA-deficient breast cancer, our findings point towards therapeutic opportunities to target DNA repair defects in tumors with complex genomic rearrangements. Citation Format: Manasi Ratnaparkhe, John Wong, Pei-Chi Wei, Mario Hlevnjak, Paul Northcott, David T. Jones, Marcel Kool, Anna Jauch, Agata Pastorczak, Andrey Korshunov, Rajiv Kumar, Susanna M. Downing, Stefan M. Pfister, Marc Zapatka, Peter J. McKinnon, Frederick W. Alt, Peter Lichter, Aurelie Ernst. Inactivation of factors of DNA double-strand break repair by homologous recombination or non-homologous end-joining leads to frequent catastrophic genomic events in murine and human tumors [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1352.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages