Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polenta, G.  (18)
  • 2020-2024  (18)
Type of Medium
Publisher
Language
Years
  • 2020-2024  (18)
Year
Subjects(RVK)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-03), p. A117-
    Abstract: The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨ z ⟩. We investigate the possibility of measuring ⟨ z ⟩ with an accuracy better than 0.002 (1 +  z ) in ten tomographic bins spanning the redshift interval 0.2  〈   z   〈  2.2, the requirements for the cosmic shear analysis of Euclid . We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨ z ⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions ( z PDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of 〉 99.8%. The z PDF approach can also be successful if the z PDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 641 ( 2020-09), p. A6-
    Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2  = 0.120 ± 0.001, baryon density Ω b h 2  = 0.0224 ± 0.0001, scalar spectral index n s  = 0.965 ± 0.004, and optical depth τ  = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ *  = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0  = (67.4 ± 0.5)  km s −1  Mpc −1 ; matter density parameter Ω m  = 0.315 ± 0.007; and matter fluctuation amplitude σ 8  = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff  = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff  = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν   〈  0.12  eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ , which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K  = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0  = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002   〈  0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ , tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 652 ( 2021-08), p. C4-
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 665 ( 2022-09), p. A56-
    Abstract: We present a tomographic weak lensing analysis of the Kilo Degree Survey Data Release 4 (KiDS-1000), using a new pseudo angular power spectrum estimator (pseudo- C ℓ ) under development for the ESA Euclid mission. Over 21 million galaxies with shape information are divided into five tomographic redshift bins, ranging from 0.1 to 1.2 in photometric redshift. We measured pseudo- C ℓ using eight bands in the multipole range 76  〈   ℓ   〈  1500 for auto- and cross-power spectra between the tomographic bins. A series of tests were carried out to check for systematic contamination from a variety of observational sources including stellar number density, variations in survey depth, and point spread function properties. While some marginal correlations with these systematic tracers were observed, there is no evidence of bias in the cosmological inference. B -mode power spectra are consistent with zero signal, with no significant residual contamination from E / B -mode leakage. We performed a Bayesian analysis of the pseudo- C ℓ estimates by forward modelling the effects of the mask. Assuming a spatially flat ΛCDM cosmology, we constrained the structure growth parameter S 8  =  σ 8 (Ω m /0.3) 1/2  = 0.754 −0.029 +0.027 . When combining cosmic shear from KiDS-1000 with baryon acoustic oscillation and redshift space distortion data from recent Sloan Digital Sky Survey (SDSS) measurements of luminous red galaxies, as well as the Lyman- α forest and its cross-correlation with quasars, we tightened these constraints to S 8  = 0.771 −0.032 +0.006 . These results are in very good agreement with previous KiDS-1000 and SDSS analyses and confirm a ∼3 σ tension with early-Universe constraints from cosmic microwave background experiments.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 675 ( 2023-7), p. A142-
    Abstract: Material outgassing in a vacuum leads to molecular contamination, a well-known problem in spaceflight. Water is the most common contaminant in cryogenic spacecraft, altering numerous properties of optical systems. Too much ice means that Euclid’s calibration requirements cannot be met anymore. Euclid must then be thermally decontaminated, which is a month-long risky operation. We need to understand how ice affects our data to build adequate calibration and survey plans. A comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records. We then review the formation of thin ice films, and find that for Euclid a mix of amorphous and crystalline ices is expected. Their surface topography – and thus optical properties – depend on the competing energetic needs of the substrate-water and the water-water interfaces, and they are hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images of thin ice films. Sophisticated tools exist to compute contamination rates, and we must understand their underlying physical principles and uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of outgassing estimates. We developed a water transport model to compute contamination rates in Euclid , and find agreement with industry estimates within the uncertainties. Tests of the Euclid flight hardware in space simulators did not pick up significant contamination signals, but they were also not geared towards this purpose; our in-flight calibration observations will be much more sensitive. To derive a calibration and decontamination strategy, we need to understand the link between the amount of ice in the optics and its effect on the data. There is little research about this, possibly because other spacecraft can decontaminate more easily, quenching the need for a deeper understanding. In our second paper, we quantify the impact of iced optics on Euclid’s data.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-3), p. A101-
    Abstract: The European Space Agency's Euclid mission will provide high-quality imaging for about 1.5 billion galaxies. A software pipeline to automatically process and analyse such a huge amount of data in real time is being developed by the Science Ground Segment of the Euclid Consortium; this pipeline will include a model-fitting algorithm, which will provide photometric and morphological estimates of paramount importance for the core science goals of the mission and for legacy science. The Euclid Morphology Challenge is a comparative investigation of the performance of five model-fitting software packages on simulated Euclid data, aimed at providing the baseline to identify the best-suited algorithm to be implemented in the pipeline. In this paper we describe the simulated dataset, and we discuss the photometry results. A companion paper is focussed on the structural and morphological estimates. We created mock Euclid images simulating five fields of view of 0.48 deg 2 each in the I E band of the VIS instrument, containing a total of about one and a half million galaxies (of which 350 000 have a nominal signal-to-noise ratio above 5), each with three realisations of galaxy profiles (single and double Sérsic, and 'realistic' profiles obtained with a neural network); for one of the fields in the double Sérsic realisation, we also simulated images for the three near-infrared Y E , J E , and H E bands of the NISP-P instrument, and five Rubin/LSST optical complementary bands ( u , g, r, i, and z ), which together form a typical dataset for an Euclid observation. The images were simulated at the expected Euclid Wide Survey depths. To analyse the results, we created diagnostic plots and defined metrics to take into account the completeness of the provided catalogues, as well as the median biases, dispersions, and outlier fractions of their measured flux distributions. Five model-fitting software packages ( DeepLeGATo , Galapagos-2 , Morfometryka , ProFit , and SourceXtractor++ ) were compared, all typically providing good results. Of the differences among them, some were at least partly due to the distinct strategies adopted to perform the measurements. In the best-case scenario, the median bias of the measured fluxes in the analytical profile realisations is below 1% at a signal-to-noise ratio above 5 in I E , and above 10 in all the other bands; the dispersion of the distribution is typically comparable to the theoretically expected one, with a small fraction of catastrophic outliers. However, we can expect that real observations will prove to be more demanding, since the results were found to be less accurate for the most realistic realisation. We conclude that existing model-fitting software can provide accurate photometric measurements on Euclid datasets. The results of the challenge are fully available and reproducible through an online plotting tool.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-3), p. A153-
    Abstract: Current and future imaging surveys require photometric redshifts (photo- z s) to be estimated for millions of galaxies. Improving the photo- z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo- z estimates by simultaneously predicting the broadband photo- z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo- z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo- z s that are 13% more precise down to magnitude i AB 〈 23; the outlier rate is also 40% lower when compared to the baseline network. Furthermore, MTL reduces the photo- z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z 〉 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated data, training on a sample with i AB 〈 23, the method reduces the photo- z scatter by 16% for all galaxies with i AB 〈 25. We also studied the effects of extending the training sample with photometric galaxies using PAUS high-precision photo- z s, which reduces the photo- z scatter by 20% in the COSMOS field.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-02), p. A149-
    Abstract: Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distributions, n ( z ), of tomographic redshift bins. We determine whether the mean redshift, ⟨ z ⟩, of ten Euclid tomographic redshift bins can be calibrated to the Euclid target uncertainties of σ (⟨ z ⟩)  〈  0.002 (1 +  z ) via cross-correlation, with spectroscopic samples akin to those from the Baryon Oscillation Spectroscopic Survey (BOSS), Dark Energy Spectroscopic Instrument (DESI), and Euclid ’s NISP spectroscopic survey. We construct mock Euclid and spectroscopic galaxy samples from the Flagship simulation and measure small-scale clustering redshifts up to redshift z   〈  1.8 with an algorithm that performs well on current galaxy survey data. The clustering measurements are then fitted to two n ( z ) models: one is the true n ( z ) with a free mean; the other a Gaussian process modified to be restricted to non-negative values. We show that ⟨ z ⟩ is measured in each tomographic redshift bin to an accuracy of order 0.01 or better. By measuring the clustering redshifts on subsets of the full Flagship area, we construct scaling relations that allow us to extrapolate the method performance to larger sky areas than are currently available in the mock. For the full expected Euclid , BOSS, and DESI overlap region of approximately 6000 deg 2 , the uncertainties attainable by clustering redshifts exceeds the Euclid requirement by at least a factor of three for both n ( z ) models considered, although systematic biases limit the accuracy. Clustering redshifts are an extremely effective method for redshift calibration for Euclid if the sources of systematic biases can be determined and removed, or calibrated out with sufficiently realistic simulations. We outline possible future work, in particular an extension to higher redshifts with quasar reference samples.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 676 ( 2023-8), p. A34-
    Abstract: This work focusses on the pilot run of a simulation campaign aimed at investigating the spectroscopic capabilities of the Euclid Near-Infrared Spectrometer and Photometer (NISP), in terms of continuum and emission line detection in the context of galaxy evolutionary studies. To this purpose, we constructed, emulated, and analysed the spectra of 4992 star-forming galaxies at 0.3 ≤ z ≤ 2.5 using the NISP pixel-level simulator. We built the spectral library starting from public multi-wavelength galaxy catalogues, with value-added information on spectral energy distribution (SED) fitting results, and stellar population templates from Bruzual & Charlot (2003, MNRAS, 344, 1000). Rest-frame optical and near-IR nebular emission lines were included using empirical and theoretical relations. Dust attenuation was treated using the Calzetti extinction law accounting for the differential attenuation in line-emitting regions with respect to the stellar continuum. The NISP simulator was configured including instrumental and astrophysical sources of noise such as the dark current, read-out noise, zodiacal background, and out-of-field stray light. In this preliminary study, we avoided contamination due to the overlap of the slitless spectra. For this purpose, we located the galaxies on a grid and simulated only the first order spectra. We inferred the 3.5 σ NISP red grism spectroscopic detection limit of the continuum measured in the H band for star-forming galaxies with a median disk half-light radius of 0.″4 at magnitude H = 19.5 ± 0.2 AB mag for the Euclid Wide Survey and at H = 20.8 ± 0.6 AB mag for the Euclid Deep Survey. We found a very good agreement with the red grism emission line detection limit requirement for the Wide and Deep surveys. We characterised the effect of the galaxy shape on the detection capability of the red grism and highlighted the degradation of the quality of the extracted spectra as the disk size increased. In particular, we found that the extracted emission line signal-to-noise ratio (S/N) drops by ~45% when the disk size ranges from 0.″25 to 1″. These trends lead to a correlation between the emission line S/N and the stellar mass of the galaxy and we demonstrate the effect in a stacking analysis unveiling emission lines otherwise too faint to detect.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 674 ( 2023-6), p. A172-
    Abstract: The Euclid mission will conduct an extragalactic survey over 15 000 deg 2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R ~ 450 for its blue and red grisms that collectively cover the 0.93–1.89 µm range. NISP will obtain spectroscopic redshifts for 3 × 10 7 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 Å to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 µm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid ’ s slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80–1.90 µm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 Å in the optical and 0.3 Å in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages