Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kam, Lance C.  (1)
  • Asia - CrossAsia  (1)
Type of Medium
Language
Years
FID
  • Asia - CrossAsia  (1)
  • 1
    In: Bone Research, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2018-03-19)
    Abstract: The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin (OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We’ve previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca 2+ ) dynamics. Here, by simultaneously monitoring Ca 2+ and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca 2+ transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles (EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1 (LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca 2+ signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle. Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca 2+ -dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca 2+ signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca 2+ -mediated signaling in bone adaptation.
    Type of Medium: Online Resource
    ISSN: 2095-6231
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2803313-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages