Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Ecology and Biogeography, Wiley, Vol. 28, No. 12 ( 2019-12), p. 1866-1878
    Abstract: Many clades display the macroevolutionary pattern of a negative relationship between standing diversity and diversification rates. Competition among species has been proposed as the main mechanism that explains this pattern. However, we currently lack empirical insight into how the effects of individual‐level ecological interactions scale up to affect species diversification. Here, we investigate a clade that shows evidence for negative diversity‐dependent diversification in the fossil record and test whether the clade's modern communities show a corresponding signal of interspecific competition. Location World's oceans. Time period Holocene. Major taxa studied Planktonic Foraminifera (Rhizaria). Methods We explore spatial and temporal ecological patterns expected under interspecific competition. Firstly, we use a community phylogenetics approach to test for signs of local competitive exclusion among ecologically similar species (defined as closely related or of similar shell sizes) by combining species relative abundances in seafloor sediments. Secondly, we analyse whether population abundances of co‐occurring species covary negatively through time using sediment trap time‐series spanning 1–12 years. Results The great majority of the assemblages are indistinguishable from randomly assembled communities, showing no significant spatial co‐occurrence patterns regarding phylogeny or size similarity. Through time, most species pairs correlated positively, indicating synchronous rather than compensatory population dynamics. Main conclusions We found no detectable evidence for interspecific competition structuring extant planktonic Foraminifera communities. Species co‐occurrences and population dynamics are likely regulated by the abiotic environment and/or distantly related species, rather than intra‐clade density‐dependent processes. This interpretation contradicts the idea that competition drives the clade's macroevolutionary dynamics. One way to better integrate community ecology and macroevolution is to consider that diversification dynamics are influenced by groups that interact ecologically even when distantly related.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 6 ( 2020-06), p. 1008-1019
    Abstract: Biodiversity dynamics comprise evolutionary and ecological changes on multiple temporal scales from millions of years to decades, but they are often interpreted within a single time frame. Planktonic foraminifera communities offer a unique opportunity for analysing the dynamics of marine biodiversity over different temporal scales. Our study aims to provide a baseline for assessments of biodiversity patterns over multiple time‐scales, which is urgently needed to interpret biodiversity responses to increasing anthropogenic pressure. Location Global (26 sites). Time period Five time‐scales: multi‐million‐year (0–7 Myr), million‐year (0–0.5 Myr), multi‐millennial (0–15 thousand years), millennial (0–1,100 years) and decadal (0–32 years). Major taxa studied Planktonic foraminifera. Methods We analysed community composition of planktonic foraminifera at five time‐scales, combining measures of standing diversity (richness and effective number of species, ENS) with measures of temporal community turnover (presence–absence‐based, dominance‐based). Observed biodiversity patterns were compared with the outcome of a neutral model to separate the effects of sampling resolution (the highest in the shortest time series) from biological responses. Results Richness and ENS decreased from multi‐million‐year to millennial time‐scales, but higher standing diversity was observed on the decadal scale. As predicted by the neutral model, turnover in species identity and dominance was strongest at the multi‐million‐year time‐scale and decreased towards the millennial scale. However, contrary to the model predictions, modern time series show rapid decadal variation in the dominance structure of foraminifera communities, which is of comparable magnitude as over much longer time periods. Community turnover was significantly correlated with global temperature change, but not on the shortest time‐scale. Main conclusions Biodiversity patterns can be to some degree predicted from the scaling effects related to different durations of time series, but changes in the dominance structure observed over the last few decades reach higher magnitude, probably forced by anthropogenic effects, than those observed over much longer durations.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Plankton Research, Oxford University Press (OUP), Vol. 41, No. 2 ( 2019-03-01), p. 127-141
    Type of Medium: Online Resource
    ISSN: 0142-7873 , 1464-3774
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 756271-8
    detail.hit.zdb_id: 1474909-9
    SSG: 12
    SSG: 21,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Vol. 570, No. 7761 ( 2019-6), p. 372-375
    In: Nature, Springer Science and Business Media LLC, Vol. 570, No. 7761 ( 2019-6), p. 372-375
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 17 ( 2019-09-12), p. 3425-3437
    Abstract: Abstract. Neogloboquadrina pachyderma is the dominant planktonic foraminifera species in the polar regions. In the northern high-latitude ocean, it makes up more than 90 % of the total assemblages, making it the dominant pelagic calcifier and carrier of paleoceanographic proxies. To assess the reaction of this species to a future shaped by climate change and to be able to interpret the paleoecological signal contained in its shells, its depth habitat must be known. Previous work showed that N. pachyderma in the northern polar regions has a highly variable depth habitat, ranging from the surface mixed layer to several hundreds of metres below the surface, and the origin of this variability remained unclear. In order to investigate the factors controlling the depth habitat of N. pachyderma, we compiled new and existing population density profiles from 104 stratified plankton tow hauls collected in the Arctic and the North Atlantic oceans during 14 oceanographic expeditions. For each vertical profile, the depth habitat (DH) was calculated as the abundance-weighted mean depth of occurrence. We then tested to what degree environmental factors (mixed-layer depth, sea surface temperature, sea surface salinity, chlorophyll a concentration, and sea ice concentration) and ecological factors (synchronized reproduction and daily vertical migration) can predict the observed DH variability and compared the observed DH behaviour with simulations by a numerical model predicting planktonic foraminifera distribution. Our data show that the DH of N. pachyderma varies between 25 and 280 m (average ∼100 m). In contrast with the model simulations, which indicate that DH is associated with the depth of chlorophyll maximum, our analysis indicates that the presence of sea ice together with the concentration of chlorophyll a at the surface have the strongest influence on the vertical habitat of this species. N. pachyderma occurs deeper when sea ice and chlorophyll concentrations are low, suggesting a time-transgressive response to the evolution of (near) surface conditions during the annual cycle. Since only surface parameters appear to affect the vertical habitat of N. pachyderma, light or light-dependant processes might influence the ecology of this species. Our results can be used to improve predictions of the response of the species to climate change and thus to refine paleoclimatic reconstructions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Biogeosciences, Copernicus GmbH, Vol. 17, No. 16 ( 2020-08-28), p. 4313-4342
    Abstract: Abstract. Temperature appears to be the best predictor of species composition of planktonic foraminifera communities, making it possible to use their fossil assemblages to reconstruct sea surface temperature (SST) variation in the past. However, the role of other environmental factors potentially modulating the spatial and vertical distribution of planktonic foraminifera species is poorly understood. This is especially relevant for environmental factors affecting the subsurface habitat. If such factors play a role, changes in the abundance of subsurface-dwelling species may not solely reflect SST variation. In order to constrain the effect of subsurface parameters on species composition, we here characterize the vertical distribution of living planktonic foraminifera community across an east–west transect through the subtropical South Atlantic Ocean, where SST variability was small, but the subsurface water mass structure changed dramatically. Four planktonic foraminifera communities could be identified across the top 700 m of the transect. Gyre and Agulhas Leakage surface faunas were predominantly composed of Globigerinoides ruber, Globigerinoides tenellus, Trilobatus sacculifer, Globoturborotalita rubescens, Globigerinella calida, Tenuitella iota, and Globigerinita glutinata, and these only differed in terms of relative abundances (community composition). Upwelling fauna was dominated by Neogloboquadrina pachyderma, Neogloboquadrina incompta, Globorotalia crassaformis, and Globorotalia inflata. Thermocline fauna was dominated by Tenuitella fleisheri, Globorotalia truncatulinoides, and Globorotalia scitula in the west and by G. scitula only in the east. The largest part of the standing stock was consistently found in the surface layer, but SST was not the main predictor of species composition either for the depth-integrated fauna across the stations or at individual depth layers. Instead, we identified a pattern of vertical stacking of different parameters controlling species composition, reflecting different aspects of the pelagic habitat. Whereas productivity appears to dominate in the mixed layer (0–60 m), physical properties (temperature, salinity) become important at intermediate depths and in the subsurface, a complex combination of factors including oxygen concentration is required to explain the assemblage composition. These results indicate that the seemingly straightforward relationship between assemblage composition and SST in sedimentary assemblages reflects vertically and seasonally integrated processes that are only indirectly linked to SST. It also implies that fossil assemblages of planktonic foraminifera should also contain a signature of subsurface processes, which could be used for paleoceanographic reconstructions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Biogeosciences Vol. 19, No. 20 ( 2022-10-19), p. 4903-4927
    In: Biogeosciences, Copernicus GmbH, Vol. 19, No. 20 ( 2022-10-19), p. 4903-4927
    Abstract: Abstract. With ongoing warming and sea ice loss, the Arctic Ocean and its marginal seas as a habitat for pelagic calcifiers are changing, possibly resulting in modifications of the regional carbonate cycle and the composition of the seafloor sediment. A substantial part of the pelagic carbonate production in the Arctic is due to the calcification of the dominant planktonic foraminifera species Neogloboquadrina pachyderma. To quantify carbonate production and loss in the upper water layer by this important Arctic calcifier, we compile and analyse data from vertical profiles in the upper water column of shell number concentration, sizes and weights of this species across the Arctic region during summer. Our data are inconclusive on whether the species performs ontogenetic vertical migration throughout its life cycle or whether individual specimens calcify at a fixed depth within the vertical habitat. The base of the productive zone of the species is on average located below 100 m and at maximum at 300 m and is regionally highly variable. The calcite flux immediately below the productive zone (export flux) is on average 8 mg CaCO3 m−2 d−1, and we observe that this flux is attenuated until at least 300 m below the base of the productive zone by a mean rate of 6.6 % per 100 m. Regionally, the summer export flux of N. pachyderma calcite varies by more than 2 orders of magnitude, and the estimated mean export flux below the twilight zone is sufficient to account for about a quarter of the total pelagic carbonate flux in the region. These results indicate that estimates of the Arctic pelagic carbonate budget will have to account for large regional differences in the export flux of the major pelagic calcifiers and confirm that substantial attenuation of the export flux occurs in the twilight zone.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Biogeosciences Vol. 15, No. 14 ( 2018-07-19), p. 4405-4429
    In: Biogeosciences, Copernicus GmbH, Vol. 15, No. 14 ( 2018-07-19), p. 4405-4429
    Abstract: Abstract. Species of planktonic foraminifera exhibit specific seasonal production patterns and different preferred vertical habitats. The seasonal and vertical habitats are not constant throughout the range of the species and changes therein must be considered when interpreting paleoceanographic reconstructions based on fossil foraminifera. However, detecting the effect of changing vertical and seasonal habitat on foraminifera proxies requires independent evidence for either habitat or climate change. In practice, this renders accounting for habitat tracking from fossil evidence almost impossible. An alternative method that could reduce the bias in paleoceanographic reconstructions is to predict species-specific habitat shifts under climate change using an ecosystem modeling approach. To this end, we present a new version of a planktonic foraminifera model, PLAFOM2.0, embedded into the ocean component of the Community Earth System Model version 1.2.2. This model predicts monthly global concentrations of the planktonic foraminiferal species Neogloboquadrina pachyderma, N. incompta, Globigerina bulloides, Globigerinoides ruber (white), and Trilobatus sacculifer throughout the world ocean, resolved in 24 vertical layers to 250 m of depth. The resolution along the vertical dimension has been implemented by applying the previously used spatial parameterization of carbon biomass as a function of temperature, light, nutrition, and competition on depth-resolved parameter fields. This approach alone results in the emergence of species-specific vertical habitats, which are spatially and temporally variable. Although an explicit parameterization of the vertical dimension has not been carried out, the seasonal and vertical distribution patterns predicted by the model are in good agreement with sediment trap data and plankton tow observations. In the simulation, the colder-water species N. pachyderma, N. incompta, and G. bulloides show a pronounced seasonal cycle in their depth habitat in the polar and subpolar regions, which appears to be controlled by food availability. During the warm season, these species preferably occur in the subsurface (below 50 m of water depth), while towards the cold season they ascend through the water column and are found closer to the sea surface. The warm-water species G. ruber (white) and T. sacculifer exhibit a less variable shallow depth habitat with highest carbon biomass concentrations within the top 40 m of the water column. Nevertheless, even these species show vertical habitat variability and their seasonal occurrence outside the tropics is limited to the warm surface layer that develops at the end of the warm season. The emergence in PLAFOM2.0 of species-specific vertical habitats, which are consistent with observations, indicates that the population dynamics of planktonic foraminifera species may be driven by the same factors in time, space, and with depth, in which case the model can provide a reliable and robust tool to aid the interpretation of proxy records.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Biogeosciences, Copernicus GmbH, Vol. 14, No. 4 ( 2017-02-24), p. 827-859
    Abstract: Abstract. Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100 m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to 〉 50 % of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula appear to descend in the water column towards the summer, whereas populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance than the periodic models. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2158181-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Nature Vol. 520, No. 7547 ( 2015-4), p. 333-336
    In: Nature, Springer Science and Business Media LLC, Vol. 520, No. 7547 ( 2015-4), p. 333-336
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages