Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 24, No. 4 ( 2004-01-28), p. 828-835
    Abstract: We combined the use of knock-out mice and subtype-selective antagonists [2-methyl-6-(phenylethynyl)pyridine (MPEP) and (E)-2-methyl-6-(2-phenylethenyl)-pyridine (SIB1893)] to examine whether endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the pathophysiology of nigro-striatal damage in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. High doses of MPTP (four injections of 20 mg/kg, i.p., every 2 hr) induced a high mortality rate and a nearly total degeneration of the nigro-striatal pathway in wild-type mice. mGlu5 knock-out mice were less sensitive to MPTP toxicity, as shown by a higher survival and a milder nigro-striatal damage. Protection against MPTP (80 mg/kg) toxicity was also observed after MPEP injections (four injections of 5 mg/kg, i.p., 30 min before each MPTP injection). MPEP treatment did not further increase neuroprotection against 80 mg/kg of MPTP in mGlu5 knock-out mice, indicating that the drug acted by inhibiting mGlu5 receptors. In wild-type mice, MPEP was also neuroprotective when challenged against lower doses of MPTP (either 30 mg/kg, single injection, or four of 10 mg/kg injections). The action of MPEP was mimicked by SIB1893 but not by the mGlu1 receptor antagonist 7-hydroxyiminocyclopropan[b] chromen-1a-carboxylic acid ethyl ester. MPEP did not change the kinetics of 1-methyl-4-phenylpyridinium ion formation in the striatum of mice injected with MPTP. We conclude that mGlu5 receptors act as amplifiers of MPTP toxicity and that mGlu5 receptor antagonists may limit the extent of nigro-striatal damage in experimental models of parkinsonism.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2004
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 32 ( 2006-08-09), p. 8388-8397
    Abstract: Moving from the evidence that activation of type 4 metabotropic glutamate (mGlu4) receptors inhibits proliferation and promotes differentiation of cerebellar granule cell neuroprogenitors, we examined the expression and function of mGlu4 receptors in medulloblastoma cells. mGlu4 receptors were expressed in 46 of 60 human medulloblastoma samples. Expression varied in relation to the histotype (nodular desmoplastic 〉 classic≫large-cell anaplastic) and was inversely related to tumor severity, spreading, and recurrence. mGlu4 receptors were also found in D283med, D341med, and DAOY medulloblastoma cell lines, where receptor activation with the selective enhancer PHCCC inhibited adenylyl cyclase and the phosphatidylinositol-3-kinase pathway without affecting the mitogen-activated protein kinase, Sonic Hedgehog, and Wnt pathways. Interestingly, mGlu4 receptor activation reduced DNA synthesis and cell proliferation in all three cell lines. This effect was abrogated by the phosphatidylinositol-3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4 H -1-benzopyran-4-one]. In in vivo experiments, repeated subcutaneous injections of N -phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) reduced the growth of D283med and DAOY cell xenografts in nude mice. More remarkably, subcutaneous or intracranial injections of PHCCC during the first week of life prevented the development of medulloblastomas in mice lacking one Patched-1 allele and x-irradiated 1 d after birth. These data suggest that mGlu4 receptor enhancers are promising drugs for the treatment of medulloblastomas.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 27, No. 31 ( 2007-08-01), p. 8297-8308
    Abstract: Dual metabotropic glutamate 2/3 (mGlu2/3) receptor agonists have been examined with success in the clinic with positive proof of efficacy in several tests of anxiety and schizophrenia. Moreover, a large body of evidence has accumulated that these drugs have significant neuroprotective potential. An important discussion in the field deals with dissecting effects on mGlu2 versus effects on mGlu3 receptors, which is relevant for the potential use of subtype-selective agonists or allosteric activators. We addressed this issue using mGlu2 and mGlu3 receptor knock-out mice. We used mixed cultures of cortical cells in which astrocytes and neurons were plated at different times and could therefore originate from different mice. Cultures were challenged with NMDA for the induction of excitotoxic neuronal death. The mGlu2/3 receptor agonist, (−)-2-oxa-4-aminocyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268), was equally neuroprotective in cultures containing neurons from wild-type, mGlu2 −/− , or mGlu3 −/− mice. Neuroprotection was instead abolished when astrocytes lacked mGlu3 receptors, unless neuronal mGlu2 receptors were also absent. The latter condition partially restored the protective activity of LY379268. Cultures in which neurons originated from mGlu2 −/− mice were also intrinsically resistant to NMDA toxicity. In in vivo experiments, systemic administration of LY379268 protected striatal neurons against NMDA toxicity in wild-type and mGlu2 −/− mice but not in mGlu3 −/− mice. In addition, LY379268 was protective against nigrostriatal degeneration induced by low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only in mice lacking mGlu2 receptors. We conclude that neuroprotection by mGlu2/3 receptor agonists requires the activation of astrocytic mGlu3 receptors, whereas, unexpectedly, activation of mGlu2 receptors might be harmful to neurons exposed to toxic insults.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2007
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 12 ( 2008-03-19), p. 3234-3245
    Abstract: 3,4-Methylenedioxymethamphetamine (MDMA) (“Ecstasy”) produces neurotoxic effects, which result into an impairment of learning and memory and other neurological dysfunctions. We examined whether MDMA induces increases in tau protein phosphorylation, which are typically associated with Alzheimer's disease and other chronic neurodegenerative disorders. We injected mice with MDMA at cumulative doses of 10–50 mg/kg intraperitoneally, which are approximately equivalent to doses generally consumed by humans. MDMA enhanced the formation of reactive oxygen species and induced reactive gliosis in the hippocampus, without histological evidence of neuronal loss. An acute or 6 d treatment with MDMA increased tau protein phosphorylation in the hippocampus, revealed by both anti-phospho(Ser 404 )-tau and paired helical filament-1 antibodies. This increase was restricted to the CA2/CA3 subfields and lasted 1 and 7 d after acute and repeated MDMA treatment, respectively. Tau protein was phosphorylated as a result of two nonredundant mechanisms: (1) inhibition of the canonical Wnt (wingless-type MMTV integration site family) pathway, with ensuing activation of glycogen synthase kinase-3β; and (2) activation of type-5 cyclin-dependent kinase (Cdk5). MDMA induced the expression of the Wnt antagonist, Dickkopf-1, and the expression of the Cdk5-activating protein, p25. In addition, the increase in tau phosphorylation was attenuated by strategies that rescued the Wnt pathway or inhibited Cdk5. Finally, an impairment in hippocampus-dependent spatial learning was induced by doses of MDMA that increased tau phosphorylation, although the impairment outlasted this biochemical event. We conclude that tau hyperphosphorylation in the hippocampus may contribute to the impairment of learning and memory associated with MDMA abuse.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 12 ( 2013-03-19), p. 4804-4809
    Abstract: Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L -acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2005
    In:  Nature Reviews Neuroscience Vol. 6, No. 10 ( 2005-10), p. 787-798
    In: Nature Reviews Neuroscience, Springer Science and Business Media LLC, Vol. 6, No. 10 ( 2005-10), p. 787-798
    Type of Medium: Online Resource
    ISSN: 1471-003X , 1471-0048
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2005
    detail.hit.zdb_id: 2028902-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MIT Press ; 2017
    In:  Journal of Cognitive Neuroscience Vol. 29, No. 4 ( 2017-04-01), p. 718-727
    In: Journal of Cognitive Neuroscience, MIT Press, Vol. 29, No. 4 ( 2017-04-01), p. 718-727
    Abstract: The medial prefrontal cortex (mPFC) and ACC have been consistently implicated in learning predictions of future outcomes and signaling prediction errors (i.e., unexpected deviations from such predictions). A computational model of ACC/mPFC posits that these prediction errors should be modulated by outcomes occurring at unexpected times, even if the outcomes themselves are predicted. However, unexpectedness per se is not the only variable that modulates ACC/mPFC activity, as studies reported its sensitivity to the salience of outcomes. In this study, mediofrontal negativity, a component of the event-related brain potential generated in ACC/mPFC and coding for prediction errors, was measured in 48 participants performing a Pavlovian aversive conditioning task, during which aversive (thus salient) and neutral outcomes were unexpectedly shifted (i.e., anticipated or delayed) in time. Mediofrontal ERP signals of prediction error were observed for outcomes occurring at unexpected times but were specific for salient (shock-associated), as compared with neutral, outcomes. These findings have important implications for the theoretical accounts of ACC/mPFC and suggest a critical role of timing and salience information in prediction error signaling.
    Type of Medium: Online Resource
    ISSN: 0898-929X , 1530-8898
    Language: English
    Publisher: MIT Press
    Publication Date: 2017
    SSG: 5,2
    SSG: 7,11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 42, No. 14 ( 2022-04-06), p. 3037-3048
    Abstract: Chronic pain is sustained by a maladaptive form of neuronal plasticity occurring in all stations of the pain neuraxis, including cortical regions of the pain matrix. We report that chronic inflammatory pain induced by unilateral injection of complete Freund's adjuvant (CFA) in the hindpaw of male mice was associated with a progressive build-up of perineuronal nets (PNNs) in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and reticular thalamic nucleus. In the SSC, the density of PNNs labeled by Wisteria floribunda agglutinin (WFA) was increased at both 3 and 7 d following CFA injection, but only after 7 d in the mPFC. The number of parvalbumin (PV)-positive interneurons enwrapped by WFA + /PNNs was also increased in all three brain regions of mice injected with CFA. Remarkably, PNN degradation induced by intracortical infusion of chondroitinase-ABC significantly reduced mechanical and thermal pain, and also reversed the increased frequency of IPSCs recorded in layer 5 pyramidal neurons of the contralateral SSC in CFA-injected mice. These findings suggest a possible relationship between cortical PNNs and nociceptive sensitization, and support the hypothesis that PNNs maintain their plasticity in the adult life and regulate cortical responses to sensory inputs. SIGNIFICANCE STATEMENT The brain extracellular matrix not only provides structural support, but also regulates synapse formation and function, and modulates neuronal excitability. We found that chronic inflammatory pain in mice enhances the density of perineuronal nets (PNNs) in the somatosensory cortex and medial prefrontal cortex. Remarkably, enzymatic degradation of PNNs in the somatosensory cortex caused analgesia and reversed alterations of inhibitory synaptic transmission associated with chronic pain. These findings disclose a novel mechanism of nociceptive sensitization and support a role for PNNs in mechanisms of neuronal plasticity in the adult brain.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2022
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 41 ( 2004-10-12), p. 14966-14971
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 41 ( 2004-10-12), p. 14966-14971
    Abstract: An abundant presynaptic protein, α-synuclein, is centrally involved in the pathogenesis of Parkinson's disease. However, conflicting data exist about the normal function of α-synuclein, possibly because α-synuclein is redundant with the very similar β-synuclein. To investigate the functions of synucleins systematically, we have now generated single- and double-knockout (KO) mice that lack α- and/or β-synuclein. We find that deletion of synucleins in mice does not impair basic brain functions or survival. We detected no significant changes in the ultrastructure of synuclein-deficient synapses, in short- or long-term synaptic plasticity, or in the pool size or replenishment of recycling synaptic vesicles. However, protein quantitations revealed that KO of synucleins caused selective changes in two small synaptic signaling proteins, complexins and 14-3-3 proteins. Moreover, we found that dopamine levels in the brains of double-KO but not single-KO mice were decreased by ≈20%. In contrast, serotonin levels were unchanged, and dopamine uptake and release from isolated nerve terminals were normal. These results show that synucleins are not essential components of the basic machinery for neurotransmitter release but may contribute to the long-term regulation and/or maintenance of presynaptic function.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 41 ( 2020-10-13), p. 25263-25271
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 41 ( 2020-10-13), p. 25263-25271
    Abstract: Glucose is an important energy source in our bodies, and its consumption results in gradients over length scales ranging from the subcellular to entire organs. Concentration gradients can drive material transport through both diffusioosmosis and convection. Convection arises because concentration gradients are mass density gradients. Diffusioosmosis is fluid flow induced by the interaction between a solute and a solid surface. A concentration gradient parallel to a surface creates an osmotic pressure gradient near the surface, resulting in flow. Diffusioosmosis is well understood for electrolyte solutes, but is more poorly characterized for nonelectrolytes such as glucose. We measure fluid flow in glucose gradients formed in a millimeter-long thin channel and find that increasing the gradient causes a crossover from diffusioosmosis-dominated to convection-dominated flow. We cannot explain this with established theories of these phenomena which predict that both scale linearly. In our system, the convection speed is linear in the gradient, but the diffusioosmotic speed has a much weaker concentration dependence and is large even for dilute solutions. We develop existing models and show that a strong surface–solute interaction, a heterogeneous surface, and accounting for a concentration-dependent solution viscosity can explain our data. This demonstrates how sensitive nonelectrolyte diffusioosmosis is to surface and solution properties and to surface–solute interactions. A comprehensive understanding of this sensitivity is required to understand transport in biological systems on length scales from micrometers to millimeters where surfaces are invariably complex and heterogeneous.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages