Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lu, Lin  (4)
  • Linguistics  (4)
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 38 ( 2010-09-22), p. 12632-12641
    Abstract: Relapse to drug seeking was studied using a rodent model of reinstatement induced by exposure to drug-related cues. The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that regulates cell growth and survival by controlling translation in response to nutrients and growth factors, has been demonstrated to be involved in neuronal adaptations that underlie drug addiction and learning and memory. We investigated the potential role of the mTOR signaling pathway in relapse to cocaine seeking by using the cue-induced reinstatement model in self-administering rats. We found that exposure to a cocaine-related cue induced reinstatement to cocaine seeking and increased phosphorylation of p70s6 kinase (p70s6k) and ribosomal protein s6 (rps6), measures of mTOR activity, in the nucleus accumbens (NAc) core but not shell. Furthermore, inhibition of NAc core but not shell p70s6k and rps6 phosphorylation by rapamycin decreased cue-induced reinstatement of cocaine seeking. Finally, stimulation of NAc core p70s6k and rps6 phosphorylation by NMDA enhanced cue-induced reinstatement, an effect reversed by rapamycin pretreatment. Additionally, rapamycin infusion into the NAc core or shell did not alter ongoing cocaine self-administration or cue-induced reinstatement of sucrose seeking. These findings indicate that cue-induced reinstatement of cocaine seeking is mediated by activation of the mTOR signaling pathway in the NAc core.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2010
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 31 ( 2010-08-04), p. 10351-10359
    Abstract: Cocaine use and relapse involves learned associations between cocaine-associated environmental contexts and discrete stimuli and cocaine effects. Initially, these contextual and discrete cues undergo memory consolidation after being paired with cocaine exposure. During abstinence, cocaine cue memories can undergo memory reconsolidation after cue exposure without the drug. We used a conditioned place preference (CPP) procedure in rats to study the role of neuronal protein kinase cyclin-dependent kinase 5 (Cdk5) in consolidation and reconsolidation of cocaine cue memories. We found that the expression of cocaine CPP in drug-free tests 1 d after CPP training (four pairings of 10 mg/kg cocaine with one context and four pairings of saline with a different context) increased Cdk5 activity, and levels of the Cdk5 activator p35 in basolateral but not central amygdala. We also found that basolateral (but not central) amygdala injections of the Cdk5 inhibitor β-butyrolactone (100 ng/side) immediately (but not 6 h) after cocaine–context pairings during training prevented subsequent cocaine CPP expression. After training, acute basolateral (but not central) amygdala β-butyrolactone injections immediately before testing prevented the expression of cocaine CPP; this effect was also observed on a second test performed 1 d later, suggesting an effect on reconsolidation of cocaine cue memories. In support, basolateral β-butyrolactone injections, given immediately (but not 6 h) after a single exposure to the cocaine-paired context, prevented cocaine CPP expression 1 and 14 d after the injections. Results indicate that basolateral amygdala Cdk5 activity is critical for consolidation and reconsolidation of the memories of cocaine-associated environmental cues.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2010
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society for Neuroscience ; 2011
    In:  The Journal of Neuroscience Vol. 31, No. 14 ( 2011-04-06), p. 5436-5446
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 14 ( 2011-04-06), p. 5436-5446
    Abstract: During abstinence, memories of drug-associated cues persist for many months, and exposure to these cues often provokes relapse to drug use. The mechanisms underlying the maintenance of these memories are unknown. A constitutively active atypical protein kinase C (PKC) isozyme, protein kinase M ζ (PKMζ), is required for maintenance of spatial memory, conditioned taste aversion, and other memory forms. We used conditioned place preference (CPP) and conditioned place aversion (CPA) procedures to study the role of nucleus accumbens PKMζ in the maintenance of drug reward and aversion memories in rats. Morphine CPP training (10 mg/kg, 4 pairings) increased PKMζ levels in accumbens core but not shell. Injections of the PKMζ inhibitor ζ inhibitory peptide (ZIP) into accumbens core but not shell after CPP training blocked morphine CPP expression for up to 14 d after injections. This effect was mimicked by the PKC inhibitor chelerythrine, which inhibits PKMζ, but not by the conventional and novel PKC inhibitor staurosporine, which does not effectively inhibit PKMζ. ZIP injections into accumbens core after training also blocked the expression of cocaine (10 mg/kg) and high-fat food CPP but had no effect on CPA induced by naloxone-precipitated morphine withdrawal. Accumbens core injections of Tat-GluR2 3Y , which inhibits GluR2-dependent AMPA receptor endocytosis, prevented the impairment in morphine CPP induced by local ZIP injections, indicating that the persistent effect of PKMζ is on GluR2-containing AMPA receptors. Results indicate that PKMζ activity in accumbens core is a critical cellular substrate for the maintenance of memories of relapse-provoking reward cues during prolonged abstinence periods.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2017
    In:  The Journal of Neuroscience Vol. 37, No. 37 ( 2017-09-13), p. 8938-8951
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 37, No. 37 ( 2017-09-13), p. 8938-8951
    Abstract: Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the activation of calpain and decreased glutamate receptor interacting protein 1 (GRIP1) expression in the nucleus accumbens (NAc) core. The inhibition of calpain activity in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory that was blocked by prior GRIP1 knock-down. Our findings indicate that calpain-GRIP signaling is essential for the restabilization process that is associated with drug cue memory and the inhibition of calpain activity may be a novel strategy for the prevention of drug relapse.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2017
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages