Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 26 ( 2001-12-18), p. 15089-15094
    Abstract: Human hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. In this work, we report on a comprehensive characterization of gene expression profiles of hepatitis B virus-positive HCC through the generation of a large set of 5′-read expressed sequence tag (EST) clusters (11,065 in total) from HCC and noncancerous liver samples, which then were applied to a cDNA microarray system containing 12,393 genes/ESTs and to comparison with a public database. The commercial cDNA microarray, which contains 1,176 known genes related to oncogenesis, was used also for profiling gene expression. Integrated data from the above approaches identified 2,253 genes/ESTs as candidates with differential expression. A number of genes related to oncogenesis and hepatic function/differentiation were selected for further semiquantitative reverse transcriptase–PCR analysis in 29 paired HCC/noncancerous liver samples. Many genes involved in cell cycle regulation such as cyclins, cyclin-dependent kinases, and cell cycle negative regulators were deregulated in most patients with HCC. Aberrant expression of the Wnt-β-catenin pathway and enzymes for DNA replication also could contribute to the pathogenesis of HCC. The alteration of transcription levels was noted in a large number of genes implicated in metabolism, whereas a profile change of others might represent a status of dedifferentiation of the malignant hepatocytes, both considered as potential markers of diagnostic value. Notably, the altered transcriptome profiles in HCC could be correlated to a number of chromosome regions with amplification or loss of heterozygosity, providing one of the underlying causes of the transcription anomaly of HCC.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 12 ( 2002-06-11), p. 8360-8365
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 12 ( 2002-06-11), p. 8360-8365
    Abstract: Phenotypic modification of dorsal root ganglion (DRG) neurons represents an important mechanism underlying neuropathic pain. However, the nerve injury-induced molecular changes are not fully identified. To determine the molecular alterations in a broader way, we have carried out cDNA array on the genes mainly made from the cDNA libraries of lumbar DRGs of normal rats and of rats 14 days after peripheral axotomy. Of the 7,523 examined genes and expressed sequence tags (ESTs), the expression of 122 genes and 51 expressed sequence tags is strongly changed. These genes encompass a large number of members of distinct families, including neuropeptides, receptors, ion channels, signal transduction molecules, synaptic vesicle proteins, and others. Of particular interest is the up-regulation of γ-aminobutyric acid A receptor α5 subunit, peripheral benzodiazepine receptor, nicotinic acetylcholine receptor α7 subunit, P2Y1 purinoceptor, Na + channel β2 subunit, and L-type Ca 2+ channel α2δ-1 subunit. Our findings therefore reveal dynamic and complex changes in molecular diversity among DRG neurons after axotomy.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 20 ( 2017-05-16), p. 5237-5242
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 20 ( 2017-05-16), p. 5237-5242
    Abstract: DNMT3A is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot DNMT3A R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged Lin − Sca1 + cKit + cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G 2 /M phase, CDK1 was up-regulated due to mTOR activation associated with DNA hypomethylation. Overexpressed CDK1-mediated EZH2 phosphorylation resulted in an abnormal trimethylation of H3K27 profile. The mTOR inhibitor rapamycin elicited a significant therapeutic response in Dnmt3a R878H/WT mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Psychological Association (APA) ; 2023
    In:  Journal of Experimental Psychology: General ( 2023-10-05)
    In: Journal of Experimental Psychology: General, American Psychological Association (APA), ( 2023-10-05)
    Type of Medium: Online Resource
    ISSN: 1939-2222 , 0096-3445
    RVK:
    Language: English
    Publisher: American Psychological Association (APA)
    Publication Date: 2023
    detail.hit.zdb_id: 2067415-6
    SSG: 5,2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 25 ( 2006-06-20), p. 9470-9475
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 25 ( 2006-06-20), p. 9470-9475
    Abstract: Methionine aminopeptidase (MetAP) removes the amino-terminal methionine residue from newly synthesized proteins, and it is a target for the development of antibacterial and anticancer agents. Available x-ray structures of MetAP, as well as other metalloaminopeptidases, show an active site containing two adjacent divalent metal ions bridged by a water molecule or hydroxide ion. The predominance of dimetalated structures leads naturally to proposed mechanisms of catalysis involving both metal ions. However, kinetic studies indicate that in many cases, only a single metal ion is required for full activity. By limiting the amount of metal ion present during crystal growth, we have now obtained a crystal structure for a complex of Escherichia coli MetAP with norleucine phosphonate, a transition-state analog, and only a single Mn(II) ion bound at the active site in the position designated M1, and three related structures of the same complex that show the transition from the mono-Mn(II) form to the di-Mn(II) form. An unliganded structure was also solved. In view of the full kinetic competence of the monometalated MetAP, the much weaker binding constant for occupancy of the M2 site compared with the M1 site, and the newly determined structures, we propose a revised mechanism of peptide bond hydrolysis by E. coli MetAP. We also suggest that the crystallization of dimetalated forms of metallohydrolases may, in some cases, be a misleading experimental artifact, and caution must be taken when structures are generated to aid in elucidation of reaction mechanisms or to support structure-aided drug design efforts.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 375, No. 6586 ( 2022-03-18), p. 1261-1265
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6586 ( 2022-03-18), p. 1261-1265
    Abstract: Electron microscopy shows that platinum grain boundaries evolve in unexpected ways during straining.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 377, No. 6607 ( 2022-08-12)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6607 ( 2022-08-12)
    Abstract: In mammals, spermiogenesis (postmeiotic male germ cell differentiation) is a highly orchestrated developmental process controlled by a group of genes collectively referred to as spermiogenic genes. Because nuclear condensation during spermiogenesis gradually halts transcription, spermiogenic genes are transcribed in advance during the earlier stages of male germ development and stored as translationally inert messenger ribonucleoproteins (mRNPs) in developing spermatids until they are needed for translation. Such inert mRNPs are usually organized into mRNP granules called germ granules, which serve as storage facilities for nontranslating mRNAs in various types of germ cells. However, little is known about how those mRNAs stored in inert mRNPs are activated during late spermiogenesis. RATIONALE To understand how translationally inert mRNAs are activated during spermiogenesis, we screened potential translational regulators by proteomic analysis of polysomes from mouse testes. FXR1, a member of the fragile X–related (FXR) protein family, stood out from the screen as a translational regulator in late spermatids. By performing eCLIP and polysome profiling, in combination with generating a germline-specific Fxr1 knockout ( Fxr1 cko ) mouse model, we investigated whether FXR1 is required for translation activation in late spermatids. To decipher the mechanism underlying FXR1-mediated translation regulation, we identified the potential cofactor(s) of FXR1 in mouse testes using immunoprecipitation coupled with mass spectrometry. We observed the formation of FXR1 granules through liquid-liquid phase separation (LLPS), which recruits translation factors in late spermatids, and used the TRICK (translating RNA imaging by coat protein knock-off) reporter system to determine whether FXR1 LLPS is required for target translation in cultured cells. To further investigate whether FXR1 LLPS is critical for target translation in mouse spermatids, we ectopically expressed wild-type FXR1, LLPS-deficient FXR1 L351P mutants, or LLPS-restored FXR1 L351P -IDR FUS mutants in Fxr1 cko testes using lentiviral testis transduction. Finally, by generating germline-specific Fxr1 L351P knock-in mice, we determined whether FXR1 LLPS is indispensable to translation activation in late spermatids, spermiogenesis, and male fertility in mice. RESULTS We found that FXR1 was much more enriched in polysomes from 35-day postpartum (dpp) testes relative to 25-dpp testes, suggesting a role for FXR1 in translation activation in late spermatids. We identified a group of 770 mRNAs as being likely direct FXR1-activated targets, and demonstrated that germline-specific Fxr1 deletion in mice markedly reduced target translation in late spermatids. Consistent with FXR1 functioning in translation activation in late spermatids, Fxr1 cko male mice were infertile and displayed spermatogenic failure at late spermiogenesis. Interestingly, we observed a pronounced up-regulation of FXR1 and the formation of abundant, distinct condensates in late spermatids, suggesting concentration-dependent LLPS. Mechanistic studies revealed that FXR1 undergoes LLPS to form condensates that assemble target mRNAs as mRNP granules and then recruit translational machinery to activate the stored mRNAs. Consistently, ectopic expression of wild-type FXR1 or FXR1 L351P -IDR FUS , but not FXR1 L351P , activated target translation in cultured cells and successfully rescued target translation in late spermatids and spermiogenesis in Fxr1 cko mice. Furthermore, Fxr1 L351P knock-in mutant mice highly phenocopy Fxr1 cko mice, directly supporting the indispensability of FXR1 LLPS to target translation in late spermatids, spermiogenesis, and male fertility in mice. CONCLUSION Our findings demonstrate that FXR1 is an essential translation activator that instructs spermiogenesis in mice and unveil a key contribution of FXR1 LLPS to the translation activation of stored mRNAs in mouse spermatid and male fertility in mice. In addition, our study pinpoints the importance of LLPS in a developmental process in vivo. FXR1-containing granules mediate translation activation in late spermatids. During late spermiogenesis, elevated FXR1 undergoes LLPS to assemble target mRNAs as FXR1 mRNP granules that recruit translational machinery by interacting with the eukaryotic translation initiation factor 4 gamma 3 (EIF4G3) to activate the stored mRNAs in late spermatids. These phase-separated FXR1 granules drive a large translation program to instruct spermatid development and sperm production in mice.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Informa UK Limited ; 2003
    In:  Chinese Sociology & Anthropology Vol. 35, No. 3 ( 2003-04), p. 51-68
    In: Chinese Sociology & Anthropology, Informa UK Limited, Vol. 35, No. 3 ( 2003-04), p. 51-68
    Type of Medium: Online Resource
    ISSN: 0009-4625
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2003
    detail.hit.zdb_id: 2653896-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 14 ( 1998-07-07), p. 8175-8180
    Abstract: Hematopoietic stem/progenitor cells (HSPCs) possess the potentials of self-renewal, proliferation, and differentiation toward different lineages of blood cells. These cells not only play a primordial role in hematopoietic development but also have important clinical application. Characterization of the gene expression profile in CD34 + HSPCs may lead to a better understanding of the regulation of normal and pathological hematopoiesis. In the present work, genes expressed in human umbilical cord blood CD34 + cells were catalogued by partially sequencing a large amount of cDNA clones [or expressed sequence tags (ESTs)] and analyzing these sequences with the tools of bioinformatics. Among 9,866 ESTs thus obtained, 4,697 (47.6%) showed identity to known genes in the GenBank database, 2,603 (26.4%) matched to the ESTs previously deposited in a public domain database, 1,415 (14.3%) were previously undescribed ESTs, and the remaining 1,151 (11.7%) were mitochondrial DNA, ribosomal RNA, or repetitive (Alu or L1) sequences. Integration of ESTs of known genes generated a profile including 855 genes that could be divided into different categories according to their functions. Some (8.2%) of the genes in this profile were considered related to early hematopoiesis. The possible function of ESTs corresponding to so far unknown genes were approached by means of homology and functional motif searches. Moreover, attempts were made to generate libraries enriched for full-length cDNAs, to better explore the genes in HSPCs. Nearly 60% of the cDNA clones of mRNA under 2 kb in our libraries had 5′ ends upstream of the first ATG codon of the ORF. With this satisfactory result, we have developed an efficient working system that allowed fast sequencing of 32 full-length cDNAs, 16 of them being mapped to the chromosomes with radiation hybrid panels. This work may lay a basis for the further research on the molecular network of hematopoietic regulation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 24 ( 2021-06-15)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 24 ( 2021-06-15)
    Abstract: Cytosolic DNA activates cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling, which triggers interferon and inflammatory responses that help defend against microbial infection and cancer. However, aberrant cytosolic self-DNA in Aicardi–Goutière’s syndrome and constituently active gain-of-function mutations in STING in STING-associated vasculopathy with onset in infancy (SAVI) patients lead to excessive type I interferons and proinflammatory cytokines, which cause difficult-to-treat and sometimes fatal autoimmune disease. Here, in silico docking identified a potent STING antagonist SN-011 that binds with higher affinity to the cyclic dinucleotide (CDN)-binding pocket of STING than endogenous 2′3′-cGAMP. SN-011 locks STING in an open inactive conformation, which inhibits interferon and inflammatory cytokine induction activated by 2′3′-cGAMP, herpes simplex virus type 1 infection, Trex1 deficiency, overexpression of cGAS-STING, or SAVI STING mutants. In Trex1 −/− mice, SN-011 was well tolerated, strongly inhibited hallmarks of inflammation and autoimmunity disease, and prevented death. Thus, a specific STING inhibitor that binds to the STING CDN-binding pocket is a promising lead compound for STING-driven disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages