Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 338, No. 6114 ( 2012-12-21), p. 1569-1575
    Abstract: The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W + , W – , and Z 0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 10 6 . The new particle is a boson with spin not equal to 1 and has a mass of about 125 giga–electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 24 ( 2023-06-13)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 24 ( 2023-06-13)
    Abstract: How left–right (LR) asymmetry emerges in a patterning field along the anterior–posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain. Here, we identify bilaterally expressed Follistatin (Fst) as a regulator blocking the propagation of the zebrafish Nodal ortholog Southpaw (Spaw) in the right lateral plate mesoderm (LPM), and restricting Spaw transmission in the left LPM to facilitate the establishment of a robust LR asymmetric Nodal patterning. In addition, Fst inhibits the Activin–Nodal signaling pathway in the forebrain thus preventing Nodal activation prior to the arrival, at a later time, of Spaw emanating from the left LPM. This contributes to the orderly propagation of asymmetric Nodal activation along the PA axis. The LR regulation function of Fst is further confirmed in chick and frog embryos. Overall, our results suggest that a robust LR patterning emerges by counteracting a Fst barrier formed along the PA axis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 364, No. 6446 ( 2019-06-21)
    Abstract: The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6610 ( 2022-09-02)
    Abstract: Brain regeneration requires the coordination of complex responses in a time- and region-specific manner. Identifying the cell types and molecules involved in this process would advance our understanding of brain regeneration and provide potential targets for regenerative medicine research. However, progress in this field has been hampered by the limited regeneration capacity of the mammalian brain and an incomplete mechanistic understanding of the regeneration process at both the cellular and molecular levels. Axolotls ( Ambystoma mexicanum ) can regenerate damaged appendages and multiple internal organs, including the brain. Therefore, axolotls may serve as a model for studying brain regeneration. RATIONALE If we are to understand the mechanism of brain regeneration, we need research tools that can achieve large-scale data acquisition and analyses to simultaneously decode complex cellular and molecular responses. It also seemed to us that a comparison between brain regeneration and developmental processes would help to provide new insights into the nature of brain regeneration. Accordingly, we removed a small portion of the lateral pallium region of the axolotl left telencephalon and collected tissue samples at multiple stages during regeneration. In parallel, we collected tissue samples of the axolotl telencephalon at multiple developmental stages. We then used high-definition and large-field Stereo-seq (spatial enhanced resolution omics sequencing) technology to generate spatial transcriptomic data from sections that covered both hemispheres of the axolotl telencephalon at single-cell resolution. Analyses of cell type annotation, cell spatial organization, gene activity dynamics, and cell state transition were performed for a mechanistic investigation of injury-induced regeneration compared to these cell attributes during development. RESULTS With the use of Stereo-seq, we generated a group of spatial transcriptomic data of telencephalon sections that covered six developmental and seven injury-induced regenerative stages. The data at single-cell resolution enabled us to identify 33 cell types present during development and 28 cell types involved in regeneration, including different types of excitatory and inhibitory neurons, and several ependymoglial cell subtypes. For development, our data revealed a primitive type of ependymoglial cells that may give rise to three subgroups of adult ependymoglial cells localized in separate areas of the ventricular zone, with different molecular features and potentially different functions. For regeneration, we discovered a subpopulation of ependymoglial cells that may originate from local resident ependymoglial cells activated by injury. This population of progenitor cells may then proliferate to cover the wound area and subsequently replenish lost neurons through a state transition to intermediate progenitors, immature neurons, and eventually mature neurons. When comparing cellular and molecular dynamics of the axolotl telencephalon between development and regeneration, we found that injury-induced ependymoglial cells were similar to developmental-specific ependymoglial cells in terms of their transcriptome state. We also observed that regeneration of the axolotl telencephalon exhibited neurogenesis patterns similar to those seen in development in molecular cascades and the potential cell lineage transition, which suggests that brain regeneration partially recapitulates the development process. CONCLUSION Our spatial transcriptomic data highlight the cellular and molecular features of the axolotl telencephalon during development and injury-induced regeneration. Further characterization of the activation and functional regulation of ependymoglial cells may yield insights for improving the regenerative capability of mammalian brains. Our single-cell spatial transcriptome of the axolotl telencephalon, a tetrapod vertebrate, also provides data useful for further research in developmental, regenerative, and evolutionary brain biology. All data are accessible in an interactive database ( https://db.cngb.org/stomics/artista ). Development and regeneration of axolotl telencephalon. The spatially resolved single-cell transcriptome of the adult axolotl telencephalon as determined by Stereo-seq analyses (left). Upon brain injury in the highlighted lateral pallium region of the left hemisphere, a neural progenitor subpopulation at the wound site was rapidly induced and subsequently replenished lost neurons (bottom right) through a process that partially resembles neurogenesis during development (top right). CREDIT: YUNZHI YANG, BGI
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 344, No. 6188 ( 2014-06-06), p. 1168-1173
    Abstract: Sheep ( Ovis aries ) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2014
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 8 ( 2023-02-21)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 8 ( 2023-02-21)
    Abstract: Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al. , Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 8 ( 2021-09-04), p. 2457-2470
    Abstract: Sensory neuronopathies are a rare and distinct subgroup of peripheral neuropathies, characterized by degeneration of the dorsal root ganglia neurons. About 50% of sensory neuronopathies are idiopathic and genetic causes remain to be clarified. Through a combination of homozygosity mapping and whole exome sequencing, we linked an autosomal recessive sensory neuronopathy to pathogenic variants in the COX20 gene. We identified eight unrelated families from the eastern Chinese population carrying a founder variant c.41A & gt;G (p.Lys14Arg) within COX20 in either a homozygous or compound heterozygous state. All patients displayed sensory ataxia with a decrease in non-length-dependent sensory potentials. COX20 encodes a key transmembrane protein implicated in the assembly of mitochondrial complex IV. We showed that COX20 variants lead to reduction of COX20 protein in patient’s fibroblasts and transfected cell lines, consistent with a loss-of-function mechanism. Knockdown of COX20 expression in ND7/23 sensory neuron cells resulted in complex IV deficiency and perturbed assembly of complex IV, which subsequently compromised cell spare respiratory capacity and reduced cell proliferation under metabolic stress. Consistent with mitochondrial dysfunction in knockdown cells, reduced complex IV assembly, enzyme activity and oxygen consumption rate were also found in patients’ fibroblasts. We speculated that the mechanism of COX20 was similar to other causative genes (e.g. SURF1, COX6A1, COA3 and SCO2) for peripheral neuropathies, all of which are functionally important in the structure and assembly of complex IV. Our study identifies a novel causative gene for the autosomal recessive sensory neuronopathy, whose vital function in complex IV and high expression in the proprioceptive sensory neuron further underlines loss of COX20 contributing to mitochondrial bioenergetic dysfunction as a mechanism in peripheral sensory neuron disease.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Brain, Oxford University Press (OUP), Vol. 143, No. 2 ( 2020-02-01), p. 491-502
    Abstract: Primary familial brain calcification is a monogenic disease characterized by bilateral calcifications in the basal ganglia and other brain regions, and commonly presents motor, psychiatric, and cognitive symptoms. Currently, four autosomal dominant (SLC20A2, PDGFRB, PDGFB, XPR1) and one autosomal recessive (MYORG) causative genes have been identified. Compared with patients with autosomal dominant primary familial brain calcification, patients with the recessive form of the disease present with more severe clinical and imaging phenotypes, and deserve more clinical and research attention. Biallelic mutations in MYORG cannot explain all autosomal recessive primary familial brain calcification cases, indicating the existence of novel autosomal recessive genes. Using homozygosity mapping and whole genome sequencing, we detected a homozygous frameshift mutation (c.140delT, p.L48*) in the JAM2 gene in a consanguineous family with two affected siblings diagnosed with primary familial brain calcification. Further genetic screening in a cohort of 398 probands detected a homozygous start codon mutation (c.1A & gt;G, p.M1?) and compound heterozygous mutations [c.504G & gt;C, p.W168C and c.(67+1_68-1)_(394+1_395-1), p.Y23_V131delinsL], respectively, in two unrelated families. The clinical phenotypes of the four patients included parkinsonism (3/4), dysarthria (3/4), seizures (1/4), and probable asymptomatic (1/4), with diverse onset ages. All patients presented with severe calcifications in the cortex in addition to extensive calcifications in multiple brain areas (lenticular nuclei, caudate nuclei, thalamus, cerebellar hemispheres, ± brainstem; total calcification scores: 43–77). JAM2 encodes junctional adhesion molecule 2, which is highly expressed in neurovascular unit-related cell types (endothelial cells and astrocytes) and is predominantly localized on the plasma membrane. It may be important in cell-cell adhesion and maintaining homeostasis in the CNS. In Chinese hamster ovary cells, truncated His-tagged JAM2 proteins were detected by western blot following transfection of p.Y23_V131delinsL mutant plasmid, while no protein was detected following transfection of p.L48* or p.1M? mutant plasmids. In immunofluorescence experiments, the p.W168C mutant JAM2 protein failed to translocate to the plasma membrane. We speculated that mutant JAM2 protein resulted in impaired cell-cell adhesion functions and reduced integrity of the neurovascular unit. This is similar to the mechanisms of other causative genes for primary familial brain calcification or brain calcification syndromes (e.g. PDGFRB, PDGFB, MYORG, JAM3, and OCLN), all of which are highly expressed and functionally important in the neurovascular unit. Our study identifies a novel causative gene for primary familial brain calcification, whose vital function and high expression in the neurovascular unit further supports impairment of the neurovascular unit as the root of primary familial brain calcification pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages